269
Views
0
CrossRef citations to date
0
Altmetric
Review

The Application of Nanoparticles for Neuroprotection in Acute Ischemic Stroke

&
Pages 915-928 | Received 20 Feb 2017, Accepted 27 Jul 2017, Published online: 25 Sep 2017

References

  • Kim AS Cahill E Cheng NT . Global stroke belt: geographic variation in stroke burden worldwide. Stroke46 (12), 3564–3570 (2015).
  • Mozaffarian D Benjamin EJ Go AS et al. Heart disease and stroke statistics–2016 update: a report from the American Heart Association. Circulation133 (4), e38–e360 (2016).
  • Zheng S Bai YY Liu Y et al. Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement. Biomaterials66, 9–20 (2015).
  • Fan J Kamphorst JJ Mathew R et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol.9, 712 (2013).
  • Lo EH Dalkara T Moskowitz MA . Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci.4 (5), 399–415 (2003).
  • Turner RC Dodson SC Rosen CL Huber JD . The science of cerebral ischemia and the quest for neuroprotection: navigating past failure to future success. J. Neurosurg.118 (5), 1072–1085 (2013).
  • Pundik S Xu K Sundararajan S . Reperfusion brain injury: focus on cellular bioenergetics. Neurology79 (13 Suppl. 1), S44–S51 (2012).
  • Rodrigo R Fernandez-Gajardo R Gutierrez R et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol. Disord Drug Targets12 (5), 698–714 (2013).
  • Thompson BJ Ronaldson PT . Drug delivery to the ischemic brain. Adv. Pharmacol.71, 165–202 (2014).
  • Lopez-Neblina F Toledo AH Toledo-Pereyra LH . Molecular biology of apoptosis in ischemia and reperfusion. J. Invest. Surg.18 (6), 335–350 (2005).
  • Gross O Thomas CJ Guarda G Tschopp J . The inflammasome: an integrated view. Immunol. Rev.243 (1), 136–151 (2011).
  • Kong Y Le Y . Toll-like receptors in inflammation of the central nervous system. Int. Immunopharmacol.11 (10), 1407–1414 (2011).
  • Xiong XY Liu L Yang QW . Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol.142, 23–44 (2016).
  • Vidale S Consoli A Arnaboldi M Consoli D . Postischemic inflammation in acute stroke. J. Clin. Neurol.13 (1), 1 (2017).
  • Kim JY Park J Chang JY Kim SH Lee JE . Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp. Neurobiol.25 (5), 241–251 (2016).
  • Anrather J Iadecola C . Inflammation and stroke: an overview. Neurotherapeutics13 (4), 661–670 (2016).
  • Fumagalli S Perego C Pischiutta F Zanier ER De Simoni MG . The ischemic environment drives microglia and macrophage function. Front. Neurol.6, 81 (2015).
  • Abbracchio MP Burnstock G Verkhratsky A Zimmermann H . Purinergic signalling in the nervous system: an overview. Trends Neurosci.32 (1), 19–29 (2009).
  • Ronaldson PT Davis TP . Blood–brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr. Pharm. Des.18 (25), 3624–3644 (2012).
  • Nair MG Guild KJ Artis D . Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. J. Immunol.177 (3), 1393–1399 (2006).
  • Baker WL Marrs JC Davis LE et al. Key articles and guidelines in the primary prevention of ischemic stroke. Pharmacotherapy33 (6), e101–e114 (2013).
  • Del ZG Saver JL Jauch EC Adams HJ . Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke40 (8), 2945–2948 (2009).
  • Schwamm LH Ali SF Reeves MJ et al. Temporal trends in patient characteristics and treatment with intravenous thrombolysis among acute ischemic stroke patients at Get With The Guidelines-Stroke hospitals. Circ. Cardiovasc. Qual. Outcomes6 (5), 543–549 (2013).
  • Leiva-Salinas C Patrie JT Xin W et al. Prediction of early arterial recanalization and tissue fate in the selection of patients with the greatest potential to benefit from intravenous tissue-type plasminogen activator. Stroke47 (2), 397–403 (2016).
  • Khandelwal P Yavagal DR Sacco RL . Acute ischemic stroke intervention. J. Am. Coll. Cardiol.67 (22), 2631–2644 (2016).
  • Catanese L Tarsia J Fisher M . Acute ischemic stroke therapy overview. Circ. Res.120 (3), 541–558 (2017).
  • Bonaventura A Montecucco F Dallegri F . Update on the effects of treatment with recombinant tissue-type plasminogen activator (rt-PA) in acute ischemic stroke. Expert Opin. Biol. Ther.16 (11), 1323–1340 (2016).
  • Friedrich B Gawlitza M Fahnert J et al. Interventional ischemic stroke treatment–a (R)evolution. Rofo188 (3), 259–267 (2016).
  • Powers WJ Derdeyn CP Biller J et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke46 (10), 3020–3035 (2015).
  • Chamorro A Dirnagl U Urra X Planas AM . Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol.15 (8), 869–881 (2016).
  • George PM Steinberg GK . Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron87 (2), 297–309 (2015).
  • O'Collins VE Macleod MR Donnan GA et al. 1,026 experimental treatments in acute stroke. Ann. Neurol.59 (3), 467–477 (2006).
  • Savitz SI Fisher M . Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann. Neurol.61 (5), 396–402 (2007).
  • Feng W Belagaje SR . Recent advances in stroke recovery and rehabilitation. Semin. Neurol.33 (5), 498–506 (2013).
  • Boltze J Reich DM Hau S et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant.21 (4), 723–737 (2012).
  • Boltze J Schmidt UR Reich DM et al. Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplant.21 (6), 1199–1211 (2012).
  • Boltze J Arnold A Walczak P et al. The dark side of the force–constraints and complications of cell therapies for stroke. Front. Neurol.6, 155 (2015).
  • Villeda SA Plambeck KE Middeldorp J et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med.20 (6), 659–663 (2014).
  • Gaudin A Yemisci M Eroglu H et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol.9 (12), 1054–1062 (2014).
  • Elzoghby AO Abd-Elwakil MM Abd-Elsalam K et al. Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr. Pharm. Des.22 (22), 3305–3323 (2016).
  • Patel T Zhou J Piepmeier JM Saltzman WM . Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev.64 (7), 701–705 (2012).
  • Liu X An C Jin P Liu X Wang L . Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials34 (3), 817–830 (2013).
  • Chen C Mei H Shi W et al. EGFP-EGF1-conjugated PLGA nanoparticles for targeted delivery of siRNA into injured brain microvascular endothelial cells for efficient RNA interference. PLoS ONE8 (4), e60860 (2013).
  • Mdzinarishvili A Sutariya V Talasila PK Geldenhuys WJ Sadana P . Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv. Transl. Res.3 (4), 309–317 (2013).
  • Wang Y Cooke MJ Sachewsky N Morshead CM Shoichet MS . Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. J. Control. Rel.172 (1), 1–11 (2013).
  • Nih LR Carmichael ST Segura T . Hydrogels for brain repair after stroke: an emerging treatment option. Curr. Opin. Biotechnol.40, 155–163 (2016).
  • Ferreira R Fonseca MC Santos T et al. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale8 (15), 8126–8137 (2016).
  • Yemisci M Caban S Gursoy-Ozdemir Y et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J. Cereb. Blood Flow Metab.35 (3), 469–475 (2015).
  • Ding Y Qiao Y Wang M et al. Enhanced neuroprotection of acetyl-11-keto-beta-boswellic acid (AKBA)-loaded O-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol. Neurobiol.53 (6), 3842–3853 (2016).
  • Joachim E Kim ID Jin Y et al. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv. Transl. Res.4 (5–6), 395–399 (2014).
  • Xing C Levchenko T Guo S et al. Delivering minocycline into brain endothelial cells with liposome-based technology. J. Cereb. Blood Flow Metab.32 (6), 983–988 (2012).
  • Peng T Britton GL Kim H et al. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke. CNS Neurosci. Ther.19 (10), 773–784 (2013).
  • Fukuta T Ishii T Asai T et al. Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions. Eur. J. Pharm. Biopharm.97 (Pt A), 1–7 (2015).
  • Lu YM Huang JY Wang H et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials35 (1), 530–537 (2014).
  • Zhao Y Jiang Y Lv W et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J. Control. Release233, 64–71 (2016).
  • Zhao H Bao XJ Wang RZ et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum. Gene Ther.22 (2), 207–215 (2011).
  • Gao H Pang Z Jiang X . Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res.30 (10), 2485–2498 (2013).
  • Kawaguchi AT Fukumoto D Haida M et al. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery. Stroke38 (5), 1626–1632 (2007).
  • Shimbo D Abumiya T Shichinohe H et al. Post-ischemic intra-arterial infusion of liposome-encapsulated hemoglobin can reduce ischemia reperfusion injury. Brain Res.1554, 59–66 (2014).
  • Takamiya M Miyamoto Y Yamashita T et al. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience221, 47–55 (2012).
  • Estevez AY Pritchard S Harper K et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol. Med.51 (6), 1155–1163 (2011).
  • Liu X Ye M An C Pan L Ji L . The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials34 (28), 6893–6905 (2013).
  • Mouhieddine TH Itani MM Nokkari A et al. Nanotheragnostic applications for ischemic and hemorrhagic strokes: improved delivery for a better prognosis. Curr. Neurol. Neurosci. Rep.15 (1), 505 (2015).
  • Kamaly N Yameen B Wu J Farokhzad OC . Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev.116 (4), 2602–2663 (2016).
  • Maurer N Fenske DB Cullis PR . Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther.1 (6), 923–947 (2001).
  • Shi J Kantoff PW Wooster R Farokhzad OC . Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer17 (1), 20–37 (2017).
  • Gilmore JL Yi X Quan L Kabanov AV . Novel nanomaterials for clinical neuroscience. J. Neuroimmune. Pharmacol3 (2), 83–94 (2008).
  • Dinda SC Pattnaik G . Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol14 (15), 1264–1274 (2013).
  • Ramos-Cabrer P Agulla J Argibay B Perez-Mato M Castillo J . Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. Int. J. Pharm.405 (1–2), 228–233 (2011).
  • Zhou L Li F Xu HB et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med.16 (12), 1439–1443 (2010).
  • Nair SB Dileep A Rajanikant GK . Nanotechnology based diagnostic and therapeutic strategies for neuroscience with special emphasis on ischemic stroke. Curr. Med. Chem.19 (5), 744–756 (2012).
  • Hwang H Jeong HS Oh PS et al. Improving cerebral blood flow through liposomal delivery of angiogenic peptides: potential of 18F-FDG PET imaging in ischemic stroke treatment. J. Nucl. Med.56 (7), 1106–1111 (2015).
  • Li SD Huang L . Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm.5 (4), 496–504 (2008).
  • Das M Patil S Bhargava N et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials28 (10), 1918–1925 (2007).
  • Schubert D Dargusch R Raitano J Chan SW . Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun.342 (1), 86–91 (2006).
  • Boison D . Adenosine as a neuromodulator in neurological diseases. Curr. Opin. Pharmacol.8 (1), 2–7 (2008).
  • Williams-Karnesky RL Stenzel-Poore MP . Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr. Neuropharmacol.7 (3), 217–227 (2009).
  • Fredholm BB Chen JF Cunha RA Svenningsson P Vaugeois JM . Adenosine and brain function. Int. Rev. Neurobiol.63, 191–270 (2005).
  • Panagiotou S Saha S . Therapeutic benefits of nanoparticles in stroke. Front. Neurosci.9, 182 (2015).
  • Pandey A Malek V Prabhakar V Kulkarni YA Gaikwad AB . Nanoparticles: a neurotoxicological perspective. CNS Neurol. Disord. Drug Targets14 (10), 1317–1327 (2015).
  • Pan CH Liu WT Bien MY et al. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int. J. Nanomedicine9, 3631–3643 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.