276
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Challenges in Realizing Selectivity for Nanoparticle Biodistribution and clearance: Lessons From Gold Nanoparticles

&
Pages 763-774 | Received 01 May 2017, Accepted 06 Jul 2017, Published online: 21 Aug 2017

References

  • Duncan R . Nanomedicine gets clinical. Materials Today8 (8 Suppl.), 16–17 (2005).
  • Weissig V Pettinger TK Murdock N . Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed.9, 4357–4373 (2014).
  • Ragelle H Danhier F Préat V Langer R Anderson DG . Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv.1–14 (2016).
  • Adams DH Eksteen B . Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat. Rev. Immunol.6 (3), 244–251 (2006).
  • Stylianopoulos T Jain RK . Design considerations for nanotherapeutics in oncology. Nanomedicine11 (8), 1893–1907 (2015).
  • Romano EL Romano M . Staphylococcal protein a bound to colloidal gold: a useful reagent to label antigen-antibody sites in electron microscopy. Immunochemistry14 (9), 711–715 (1977).
  • Albanese A Tsoi KM Chan WCW . Simultaneous quantification of cells and nanomaterials by inductive-coupled plasma techniques. J. Lab. Autom.18 (1), 99–104 (2013).
  • Matsumura Y Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46 (12 Part 1), 6387–6392 (1986).
  • Maeda H . Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Rel.164 (2), 138–144 (2012).
  • Clark AJ Wiley DT Zuckerman JE et al. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl Acad. Sci. USA113 (14), 3850–3854 (2016).
  • Prabhakar U Maeda H Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res.73 (8), 2412–2417 (2013).
  • Longmire M Choyke PL Kobayashi H . Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.)3 (5), 703–717 (2008).
  • Tsoi KM Macparland SA Ma X-Z et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater.15 (11), 1212–1221 (2016).
  • Semmler-Behnke M Kreyling WG Lipka J et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small4 (12), 2108–2111 (2008).
  • Haschek WM Rousseaux CG Wallig MA . Chapter 9–The liver. In : Fundamentals of Toxicologic Pathology (2nd Edition). Academic Press, San Diego, CA, USA, 197–235 (2010).
  • Zhang Y-N Poon W Tavares AJ Mcgilvray ID Chan WCW . Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Rel.240, 332–348 (2016).
  • Braet F Wisse E . Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol.1, 1–1 (2002).
  • Cho W-S Cho M Jeong J et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236 (1), 16–24 (2009).
  • Cho W-S Cho M Jeong J et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.245 (1), 116–123 (2010).
  • Sadauskas E Wallin H Stoltenberg M et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol.4, 10 (2007).
  • Singer JM Adlersberg L Sadek M . Long-term observation of intravenously injected colloidal gold in mice. J. Reticuloendothel. Soc.12 (6), 658–671 (1972).
  • Melancon MP Lu W Yang Z et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther.7 (6), 1730–1739 (2008).
  • Chattopadhyay N Cai Z Pignol J-P et al. Design and characterization of HER-2-targeted gold nanoparticles for enhanced x-radiation treatment of locally advanced breast cancer. Mol. Pharm.7 (6), 2194–2206 (2010).
  • Kumar A Ma H Zhang X et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials33 (4), 1180–1189 (2012).
  • Meyers JD Cheng Y Broome AM et al. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact.32 (4), 448–457 (2015).
  • Rathinaraj P Lee K Park S-Y Kang I-K . Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Res. Lett.10, 5 (2015).
  • Chanda N Kattumuri V Shukla R et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl Acad. Sci. USA107 (19), 8760–8765 (2010).
  • Choi CHJ Alabi CA Webster P Davis ME . Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl Acad. Sci. USA107 (3), 1235–1240 (2010).
  • Pirollo KF Chang EH . Does a targeting ligand influence nanoparticle tumor localization or uptake?Trends Biotechnol.26 (10), 552–558 (2008).
  • Huang X Peng X Wang Y et al. A re-examination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano4 (10), 5887–5896 (2010).
  • Charan S Sanjiv K Singh N et al. Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug. Chem.23 (11), 2173–2182 (2012).
  • Patra CR Bhattacharya R Mukhopadhyay D Mukherjee P . Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev.62 (3), 346–361 (2010).
  • Peiris PM Deb P Doolittle E et al. Vascular targeting of a gold nanoparticle to breast cancer metastasis. J. Pharm. Sci.104 (8), 2600–2610 (2015).
  • De Jong WH Hagens WI Krystek P Burger MC Sips AJ Geertsma RE . Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29 (12), 1912–1919 (2008).
  • Zhou C Long M Qin Y Sun X Zheng J . Luminescent gold nanoparticles with efficient renal clearance. Angewandte Chemie International Edition50 (14), 3168–3172 (2011).
  • Bertrand N Wu J Xu X Kamaly N Farokhzad OC . Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014).
  • Bae YH Park K . Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Rel.153 (3), 198–205 (2011).
  • Arvizo RR Miranda OR Moyano DF et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One6 (9), e24374 (2011).
  • Hirn S Semmler-Behnke M Schleh C et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. e.V77 (3), 407–416 (2011).
  • Liu Y Sun J Han J He Z . Long-circulating targeted nanoparticles for cancer therapy. Current Nanosci.6 (4), 347–354 (2010).
  • Moghimi SM Hunter AC Murray JC . Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53 (2), 283–318 (2001).
  • Jokerst JV Lobovkina T Zare RN Gambhir SS . Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.)6 (4), 715–728 (2011).
  • Blanco E Shen H Ferrari M . Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotech.33 (9), 941–951 (2015).
  • Doane T Burda C . Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev.65 (5), 607–621 (2013).
  • Albanese A Chan WCW . Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano5 (7), 5478–5489 (2011).
  • Walkey CD Olsen JB Guo H Emili A Chan WCW . Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc.134 (4), 2139–2147 (2012).
  • Dai Q Walkey C Chan WCW . Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angewandte Chemie53 (20), 5093–5096 (2014).
  • Perrault SD Walkey C Jennings T Fischer HC Chan WCW . Mediating tumor targeting efficiency of nanoparticles through design. Nano Letters9 (5), 1909–1915 (2009).
  • Larson TA Joshi PP Sokolov K . Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano6 (10), 9182–9190 (2012).
  • Maus L Dick O Bading H Spatz JP Fiammengo R . Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors. ACS Nano4 (11), 6617–6628 (2010).
  • Rodriguez PL Harada T Christian DA Pantano DA Tsai RK Discher DE . Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science (N.Y.)339 (6122), 971–975 (2013).
  • Röhme D . Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl Acad. Sci. USA78 (8), 5009–5013 (1981).
  • Kay MM . Mechanism of removal of senescent cells by human macrophages in situ. Proc. Natl Acad. Sci. USA72 (9), 3521–3525 (1975).
  • Hu C-MJ Zhang L Aryal S Cheung C Fang RH Zhang L . Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA108 (27), 10980–10985 (2011).
  • Parodi A Quattrocchi N Van De Ven AL et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nano8 (1), 61–68 (2013).
  • Tenzer S Docter D Kuharev J et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nano8 (10), 772–781 (2013).
  • Ritz S Schöttler S Kotman N et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules16 (4), 1311–1321 (2015).
  • Schöttler S Becker G Winzen S et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nano11 (4), 372–377 (2016).
  • Fleischer CC Payne CK . Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B.118 (49), 14017–14026 (2014).
  • Walkey CD Olsen JB Song F et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano8 (3), 2439–2455 (2014).
  • Geng Y Dalhaimer P Cai S et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano2 (4), 249–255 (2007).
  • Wang J Bai R Yang R et al. Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics7 (3), 516–524 (2015).
  • Maltzahn GV Park J-H Agrawal A et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer res.69 (9), 3892–3900 (2009).
  • Wilhelm S Tavares AJ Dai Q et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater.1, 16014 (2016).
  • Nichols JW Bae YH . Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today7 (6), 606–618 (2012).
  • Li M Panagi Z Avgoustakis K Reineke J . Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int. J. Nanomed.7, 1345–1356 (2012).
  • Wang B He X Zhang Z Zhao Y Feng W . Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acct Chem. Res.46 (3), 761–769 (2012).
  • Brenner BM Bohrer MP Baylis C Deen WM . Determinants of glomerular permselectivity: insights derived from observations in vivo. Kidney Int.12 (4), 229–237 (1977).
  • Chou LYT Zagorovsky K Chan WCW . DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nano9 (2), 148–155 (2014).
  • Soo Choi H Liu W Misra P et al. Renal clearance of quantum dots. Nat. Biotech.25 (10), 1165–1170 (2007).
  • Pérez-Campaña C Gómez-Vallejo V Puigivila M et al. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano7 (4), 3498–3505 (2013).
  • Singh R Pantarotto D Lacerda L et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA103 (9), 3357–3362 (2006).
  • Haschek WM Rousseaux CG Wallig MA . Kidney and lower urinary tract. In : Fundamentals of Toxicologic Pathology (2nd Edition). Academic Press, San Diego, CA, USA, 261–318 (2010).
  • Lipka J Semmler-Behnke M Sperling RA et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials31 (25), 6574–6581 (2010).
  • Liu T Choi H Zhou R Chen IW . RES blockade. A strategy for boosting efficiency of nanoparticle drug. Nano Today10 (1), 11–21 (2015).
  • Crofton R Diesselhoff-Den Dulk M Furth R . The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state. J. Exp. Med.148 (1), 1–17 (1978).
  • Sadauskas E Danscher G Stoltenberg M Vogel U Larsen A Wallin H . Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine5 (2), 162–169 (2009).
  • Tam JM Tam JO Murthy A et al. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. ACS Nano4 (4), 2178–2184 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.