313
Views
0
CrossRef citations to date
0
Altmetric
Review

A Review on Recent Technologies for the Manufacture of Pulmonary Drugs

, &
Pages 47-70 | Received 24 Jul 2017, Accepted 16 Oct 2017, Published online: 08 Dec 2017

References

  • Traini D Young PM . Delivery of antibiotics to the respiratory tract: an update. Exp. Opin. Drug Deliv.6 (9), 897–905 (2009).
  • Labiris NR Dolovich MB . Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol.56 (6), 588–599 (2003).
  • Smola M Vandamme T Sokolowski A . Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomed.3 (1), 1–19 (2008).
  • Siekmeier R Scheuch G . Treatment of systemic diseases by inhalation of biomolecule aerosols. J. Physiol. Pharmacol.60 (Suppl. 5), 15–26 (2009).
  • Traini D Young PM . Formulation of inhalation medicines. In : Inhalation Drug Delivery: Techniques and Products. ColomboPTrainiDButtiniF ( Eds). John Wiley & Sons, Ltd, Chichester, UK, 31–45 (2013).
  • Zhou QT Leung SSY Tang P Parumasivam T Loh ZH Chan HK . Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev.85, 83–99 (2015).
  • Ibrahim M Verma R Garcia-Contreras L . Inhalation drug delivery devices: technology update. Med. Devices (Auckl).8, 131–139 (2015).
  • Dal Negro RW . Dry powder inhalers and the right things to remember: a concept review. Multidisciplinary Resp. Med.10 (1), 13 (2015).
  • Copley M . Regulatory challenges of inhaler testing. Pharmaceutical Technology Europe. Advanstar Publishers. November 1st21 (11), 24–27 (2009).
  • Groneberg DA Witt C Wagner U Chung KF Fischer A . Fundamentals of pulmonary drug delivery. Resp. Med.97 (4), 382–387 (2003).
  • Carvalho TC Peters JI Williams RO . Influence of particle size on regional lung deposition–what evidence is there?Int. J. Pharm.406 (1), 1–10 (2011).
  • Swarbrick J Boylan JC . Encyclopedia of Pharmaceutical Technology: Volume 20 (Supplement 3). CRC Press, Boca Raton, Florida (2000).
  • Zhang J Ebbens S Chen X et al. Determination of the surface free energy of crystalline and amorphous lactose by atomic force microscopy adhesion measurement. Pharm. Res.23 (2), 401–407 (2006).
  • Mortensen NP Durham P Hickey AJ . The role of particle physico-chemical properties in pulmonary drug delivery for tuberculosis therapy. J. Microencapsulation31 (8), 785–795 (2014).
  • Traini D . Inhalation drug delivery. In : Inhalation Drug Delivery: Techniques and Products. ColomboPTrainiDButtiniF ( Eds). John Wiley & Sons, Ltd, Chichester, UK, 1–14 (2013).
  • Ziffels S Bemelmans NL Durham PG Hickey AJ . In vitro dry powder inhaler formulation performance considerations. J. Control. Rel.199 (Suppl. C), 45–52 (2015).
  • Lee SL Adams WP Li BV Conner DP Chowdhury BA Lawrence XY . In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. AAPS J.11 (3), 414–423 (2009).
  • Chow AHL Tong HHY Chattopadhyay P Shekunov BY . Particle engineering for pulmonary drug delivery. Pharm. Res.24 (3), 411–437 (2007).
  • Crowder TM Rosati JA Schroeter JD Hickey AJ Martonen TB . Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm. Res.19 (3), 239–245 (2002).
  • Shekunov BY Chattopadhyay P Tong HH Chow AH . Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res.24 (2), 203–227 (2007).
  • Tang P Chan HK Raper JA . Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol.147 (1), 64–78 (2004).
  • Kaialy W Ticehurst M Nokhodchi A . Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Int. J. Pharm.423 (2), 184–194 (2012).
  • Kaialy W Martin GP Larhrib H Ticehurst MD Kolosionek E Nokhodchi A . The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Colloids and Surfaces B: Biointerfaces89, 29–39 (2012).
  • Burnett DJ Heng JYY Thielmann F Garcia AR Naderi M Acharya M . Measuring surface roughness of pharmaceutical powders using vapor sorption methods. AAPS PharmSciTech.12 (1), 56–61 (2011).
  • Tang P Chew NYK Chan HK Raper JA . Limitation of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel-Halsey-Hill theory. Langmuir19 (7), 2632–2638 (2003).
  • Peng T Lin S Niu B et al. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharmaceutica Sinica B6 (4), 308–318 (2016).
  • Parsian AR Vatanara A Rahmati MR Gilani K Khosravi KM Najafabadi AR . Inhalable budesonide porous microparticles tailored by spray freeze drying technique. Powder Technol.260, 36–41 (2014).
  • Hassan MS Lau RWM . Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech.10 (4), 1252–1262 (2009).
  • Kho K Hadinoto K . Dry powder inhaler delivery of amorphous drug nanoparticles: effects of the lactose carrier particle shape and size. Powder Technol.233, 303–311 (2013).
  • Chan LW Tan LH Heng PWS . Process analytical technology: application to particle sizing in spray drying. AAPS PharmSciTech.9 (1), 259–266 (2008).
  • Medendorp J Bric J Connelly G Tolton K Warman M . Development and beyond: strategy for long-term maintenance of an online laser diffraction particle size method in a spray drying manufacturing process. J. Pharm. Biomed. Anal.112, 79–84 (2015).
  • Schorsch S Ochsenbein DR Vetter T Morari M Mazzotti M . High accuracy online measurement of multidimensional particle size distributions during crystallization. Chem. Eng. Sci.105, 155–168 (2014).
  • Corn M . The adhesion of solid particles to solid surfaces, I. A review. J. Air Pollut. Control Assoc.11 (11), 523–528 (1961).
  • Murnane D Martin GP Marriott C . Dry powder formulations for inhalation of fluticasone propionate and salmeterol xinafoate microcrystals. J. Pharm. Sci.98 (2), 503–515 (2009).
  • Royall PG Woodhead B Tang SJ Martin GP Stockton BM Murnane D . Formation and measurement of process induced disorder during the manufacture of inhalation medicines. J. Drug Deliv. Sci. Technol.21 (4), 311–318 (2011).
  • Le V Thi TH Robins E Flament M . Dry powder inhalers: study of the parameters influencing adhesion and dispersion of fluticasone propionate. AAPS PharmSciTech.13 (2), 477–484 (2012).
  • Kaialy W Larhrib H Nokhodchi A . The effect of carrier particle size on adhesion, content uniformity and inhalation performance of budesonide using dry powder inhalers. In : Particulate Materials: Synthesis, Characterisation, Processing and Modelling. WuC-YGeW ( Eds). The Royal Society of Chemistry, United Kingdom, 113–119 (2012).
  • Schoenherr C Haefele T Paulus K Francese G . Confocal Raman microscopy to probe content uniformity of a lipid based powder for inhalation: a quality by design approach. Eur. J. Pharm. Sci.38 (1), 47–54 (2009).
  • Gupta A Peck GE Miller RW Morris KR . Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends. J. Pharm. Sci.94 (7), 1589–1597 (2005).
  • Lai CK Holt D Leung JC Cooney CL Raju GK Hansen P . Real time and noninvasive monitoring of dry powder blend homogeneity. AlChE J.47 (11), 2618–2622 (2001).
  • Seville PC Learoyd TP Li HY Williamson IJ Birchall JC . Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery. Powder Technol.178 (1), 40–50 (2007).
  • Zhao M You Y Ren Y Zhang Y Tang X . Formulation, characteristics and aerosolization performance of azithromycin DPI prepared by spray-drying. Powder Technol.187 (3), 214–221 (2008).
  • Simon A Amaro MI Cabral LM Healy AM De Sousa VP . Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int. J. Pharm.501 (1), 124–138 (2016).
  • Sou T Kaminskas LM Nguyen TH Carlberg R Mcintosh MP Morton DaV . The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. Eur. J. Pharmaceut. Biopharmaceut.83 (2), 234–243 (2013).
  • Malamatari M Somavarapu S Kachrimanis K Buckton G Taylor KMG . Preparation of respirable nanoparticle agglomerates of the low melting and ductile drug ibuprofen: impact of formulation parameters. Powder Technol.308, 123–134 (2017).
  • Pilcer G Amighi K . Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm.392 (1), 1–19 (2010).
  • Hamishehkar H Rahimpour Y Javadzadeh Y . The role of carrier in dry powder inhaler. In : Recent Advances in Novel Drug Carrier Systems. SezerAD ( Ed.). InTech, United Kingdom (2012).
  • Pilcer G Vanderbist F Amighi K . Spray-dried carrier-free dry powder tobramycin formulations with improved dispersion properties. J. Pharm. Sci.98 (4), 1463–1475 (2009).
  • Xu L-M Hu T-T Pu Y Le Y Chen J-F Wang J-X . Preparation of high-performance ultrafine budesonide particles for pulmonary drug delivery. Chem. Eng. J.252, 281–287 (2014).
  • Aoki Y Kojo Y Yamada S Onoue S . Respirable dry powder formulation of bleomycin for developing a pulmonary fibrosis animal model. J. Pharm. Sci.101 (6), 2074–2081 (2012).
  • Chiou H Li L Hu T Chan HK Chen JF Yun J . Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation. Int. J. Pharm.331 (1), 93–98 (2007).
  • Chiou H Chan HK Heng D Prud'homme RK Raper JA . A novel production method for inhalable cyclosporine A powders by confined liquid impinging jet precipitation. J. Aerosol Sci39 (6), 500–509 (2008).
  • Dimer FA Ortiz M Pohlmann AR Guterres SS . Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J. Drug Deliv. Sci. Technol.29, 152–158 (2015).
  • Zhang H-X Wang J-X Zhang Z-B Le Y Shen Z-G Chen J-F . Micronization of atorvastatin calcium by antisolvent precipitation process. Int. J. Pharm.374 (1), 106–113 (2009).
  • Shariare MH De Matas M York P . Effect of crystallisation conditions and feedstock morphology on the aerosolization performance of micronised salbutamol sulphate. Int. J. Pharm.415 (1–2), 62–72 (2011).
  • Li Y Zhao X Zu Y et al. Preparation and characterization of micronized ellagic acid using antisolvent precipitation for oral delivery. Int. J. Pharm.486 (1), 207–216 (2015).
  • Tierney TB Guo Y Beloshapkin S Rasmuson ÅC Hudson SP . Investigation of the particle growth of fenofibrate following antisolvent precipitation and freeze-drying. Crystal Growth & Design15 (11), 5213–5222 (2015).
  • Zu Y Sun W Zhao X et al. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Eur. J. Pharm. Sci.53, 109–117 (2014).
  • Xu L-M Zhang Q-X Zhou Y Zhao H Wang J-X Chen J-F . Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int. J. Pharm.436 (1), 1–9 (2012).
  • Son Y-J Mcconville JT . A new respirable form of rifampicin. Eur. J. Pharm. Biopharm.78 (3), 366–376 (2011).
  • Hu T Chiou H Chan HK Chen JF Yun J . Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation. J. Pharm. Sci.97 (2), 944–949 (2008).
  • Yang ZY Le Y Hu TT Shen Z Chen JF Yun J . Production of ultrafine sumatriptan succinate particles for pulmonary delivery. Pharm. Res.25 (9), 2012–2018 (2008).
  • Zhao H Le Y Liu H et al. Preparation of microsized spherical aggregates of ultrafine ciprofloxacin particles for dry powder inhalation (DPI). Powder Technol.194 (1), 81–86 (2009).
  • Schoubben A Blasi P Giovagnoli S Rossi C Ricci M . Development of a scalable procedure for fine calcium alginate particle preparation. Chem. Eng. J.160 (1), 363–369 (2010).
  • Cai X Yang Y Xie X et al. Preparation, characterization and pulmonary pharmacokinetics of a new inhalable zanamivir dry powder. Drug Delivery23 (6), 1962–1971 (2016).
  • Nolan LM Li J Tajber L Corrigan OI Healy AM . Particle engineering of materials for oral inhalation by dry powder inhalers. II–sodium cromoglicate. Int. J. Pharm.405 (1), 36–46 (2011).
  • Nolan LM Tajber L Mcdonald BF Barham AS Corrigan OI Healy AM . Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Eur. J. Pharm. Sci.37 (5), 593–602 (2009).
  • Parikh R Dalwadi S . Preparation and characterization of controlled release poly-ε-caprolactone microparticles of isoniazid for drug delivery through pulmonary route. Powder Technol.264, 158–165 (2014).
  • Yang X-F Xu Y Qu D-S Zhu J Li H-Y . Excipient-free, spray-dried powders for pulmonary aztreonam delivery. J. Drug Deliv. Sci. Technol.28, 7–10 (2015).
  • Kim YH Shing KS . Supercritical fluid-micronized ipratropium bromide for pulmonary drug delivery. Powder Technol.182 (1), 25–32 (2008).
  • Adami R Reverchon E Järvenpää E Huopalahti R . Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol.182 (1), 105–112 (2008).
  • Tavares Cardoso MA Geraldes V Cabral JMS Palavra AMF . Characterization of minocycline powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids46 (1), 71–76 (2008).
  • Li Z Jiang J Liu X Zhao S Xia Y Tang H . Preparation of erythromycin microparticles by supercritical fluid expansion depressurization. J. Supercritical Fluids41 (2), 285–292 (2007).
  • Zhiyi L Jingzhi J Xuewu L Yuanjing X Shunxuan Z Jian W . Preparation of tetracycline microparticles suitable for inhalation administration by supercritical fluid expansion depressurization. Chemical Engineering and Processing: Process Intensification47 (8), 1311–1316 (2008).
  • Zhiyi L Jingzhi J Xuewu L Huihua T Wei W . Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology. J. Supercrit. Fluids48 (3), 247–252 (2009).
  • Su CS Lo WS Lien LH . Micronization of fluticasone propionate using supercritical antisolvent (SAS) process. Chem. Eng. Technol.34 (4), 535–541 (2011).
  • Dhumal RS Biradar SV Paradkar AR York P . Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. Int. J. Pharm.368 (1–2), 129–137 (2009).
  • Muhammad SaFS Oubani H Abbas A Chan HK Kwok PCL Dehghani F . The production of dry powder by the sonocrystallisation for inhalation drug delivery. Powder Technol.246, 337–344 (2013).
  • El-Gendy N Huang S Selvam P Soni P Berkland C . Development of budesonide nanocluster dry powder aerosols: formulation and stability. J. Pharm. Sci.101 (9), 3445–3455 (2012).
  • Adi H Young PM Chan HK Agus H Traini D . Co-spray-dried mannitol-ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur. J. Pharm. Sci.40 (3), 239–247 (2010).
  • Wu X Hayes D Jr Zwischenberger JB Kuhn RJ Mansour HM . Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug Des. Devel. Ther.7, 59–72 (2013).
  • Khandouzi F Daman Z Gilani K . Optimized particle engineering of fluticasone propionate and salmeterol xinafoate by spray drying technique for dry powder inhalation. Adv. Powder Technol.28 (2), 534–542 (2017).
  • Li X Vogt FG Hayes D Jr Mansour HM . Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers. J. Pharm. Sci.103 (9), 2937–2949 (2014).
  • Xu EY Guo J Xu Y Li HY Seville PC . Influence of excipients on spray-dried powders for inhalation. Powder Technol.256, 217–223 (2014).
  • Kadota K Nishimura T Hotta D Tozuka Y . Preparation of composite particles of hydrophilic or hydrophobic drugs with highly branched cyclic dextrin via spray drying for dry powder inhalers. Powder Technol.283, 16–23 (2015).
  • Ober CA Kalombo L Swai H Gupta RB . Preparation of rifampicin/lactose microparticle composites by a supercritical antisolvent-drug excipient mixing technique for inhalation delivery. Powder Technol.236, 132–138 (2013).
  • Kim YH Sioutas C Fine P Shing KS . Effect of albumin on physical characteristics of drug particles produced by supercritical fluid technology. Powder Technol.182 (3), 354–363 (2008).
  • Yamasaki K Kwok PCL Fukushige K Prud'homme RK Chan HK . Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. Int. J. Pharm.420 (1), 34–42 (2011).
  • Tajber L Corrigan DO Corrigan OI Healy AM . Spray drying of budesonide, formoterol fumarate and their composites-I. Physicochemical characterisation. Int. J. Pharm.367 (1–2), 79–85 (2009).
  • Ni R Zhao J Liu Q Liang Z Muenster U Mao S . Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci.99, 137–146 (2017).
  • Schoubben A Blasi P Giovagnoli S Ricci M Rossi C . Simple and scalable method for peptide inhalable powder production. Eur. J. Pharm. Sci.39 (1), 53–58 (2010).
  • Ni R Muenster U Zhao J et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J. Control. Rel.249, 11–22 (2017).
  • Yang Y Bajaj N Xu P Ohn K Tsifansky MD Yeo Y . Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials30 (10), 1947–1953 (2009).
  • Panchal R Patel H Patel V Joshi P Parikh A . Formulation and evalution of montelukast sodium-chitosan based spray dried microspheres for pulmonary drug delivery. J. Pharmacy Bioallied. Sci.4 (Suppl. 1), S110 (2012).
  • Ceschan NE Bucalá V Ramírez-Rigo MV . Polymeric microparticles containing indomethacin for inhalatory administration. Powder Technol.285, 51–61 (2015).
  • Noraizaan AN Wong TW . Physicochemical effects of lactose microcarrier on inhalation performance of rifampicin in polymeric nanoparticles. Powder Technol.310, 272–281 (2017).
  • Fontana MC Durli TL Pohlmann AR Guterres SS Beck RCR . Polymeric controlled release inhalable powder produced by vibrational spray-drying: one-step preparation and in vitro lung deposition. Powder Technol.258, 49–59 (2014).
  • Patomchaiviwat V Paeratakul O Kulvanich P . Formation of inhalable rifampicin–poly (L-lactide) microparticles by supercritical anti-solvent process. AAPS PharmSciTech.9 (4), 1119–1129 (2008).
  • Prosapio V Reverchon E De Marco I . Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. J. Supercrit. Fluids118, 19–26 (2016).
  • Moghaddam PH Ramezani V Esfandi E et al. Development of a nano-micro carrier system for sustained pulmonary delivery of clarithromycin. Powder Technol.239, 478–483 (2013).
  • Takami T Murakami Y . Development of PEG–PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers. Colloids and Surfaces B: Biointerfaces87 (2), 433–438 (2011).
  • Leung SSY Parumasivam T Gao FG et al. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res.33 (6), 1486–1496 (2016).
  • Kaialy W Martin GP Ticehurst MD et al. Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers. AAPS J.13 (1), 30–43 (2011).
  • Sou T Forbes RT Gray J et al. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: the use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. Powder Technol.287, 248–255 (2016).
  • Sarrate R Ticó JR Miñarro M et al. Modification of the morphology and particle size of pharmaceutical excipients by spray drying technique. Powder Technol.270 (Part A), 244–255 (2015).
  • Mohajel N Najafabadi AR Azadmanesh K et al. Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int. J. Pharm.423 (2), 577–585 (2012).
  • Zhang J Lv H Jiang K Gao Y . Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int. J. Pharm.420 (1), 180–188 (2011).
  • Mohtar N Taylor KM Sheikh K Somavarapu S . Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin. Eur. J. Pharm. Biopharm.113, 1–10 (2017).
  • Shoyele SA Sivadas N Cryan SA . The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1–34) prepared as a dry powder for inhalation. AAPS PharmSciTech.12 (1), 304–311 (2011).
  • Maltesen MJ Bjerregaard S Hovgaard L Havelund S Van De Weert M . Quality by design–spray drying of insulin intended for inhalation. Eur. J. Pharm. Biopharm.70 (3), 828–838 (2008).
  • Ung KT Rao N Weers JG Huang D Chan HK . Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose. Int. J. Pharm.511 (2), 1070–1079 (2016).
  • Shen Z-G Chen W-H Jugade N et al. Fabrication of inhalable spore like pharmaceutical particles for deep lung deposition. Int. J. Pharm.430 (1), 98–103 (2012).
  • Hu L Kong D Hu Q Gao N Pang S . Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res. Lett.10 (1), 381 (2015).
  • Kurniawansyah F Mammucari R Foster NR . Inhalable curcumin formulations by supercritical technology. Powder Technol.284, 289–298 (2015).
  • Kwok PCL Tunsirikongkon A Glover W Chan HK . Formation of protein nano-matrix particles with controlled surface architecture for respiratory drug delivery. Pharm. Res.28 (4), 788–796 (2011).
  • Ógáin ON Li J Tajber L Corrigan OI Healy AM . Particle engineering of materials for oral inhalation by dry powder inhalers. I–particles of sugar excipients (trehalose and raffinose) for protein delivery. Int. J. Pharm.405 (1), 23–35 (2011).
  • Kang Y-Q Zhao C Chen A-Z et al. Study of lysozyme-loaded poly-L-lactide (PLLA) porous microparticles in a compressed CO2 antisolvent process. Materials6 (8), 3571–3583 (2013).
  • Abbas A Srour M Tang P Chiou H Chan HK Romagnoli JA . Sonocrystallisation of sodium chloride particles for inhalation. Chem. Eng. Sci.62 (9), 2445–2453 (2007).
  • Audouy SaL Van Der Schaaf G Hinrichs WLJ Frijlink HW Wilschut J Huckriede A . Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine29 (26), 4345–4352 (2011).
  • Patil HP Murugappan S De Vries-Idema J et al. Comparison of adjuvants for a spray freeze-dried whole inactivated virus influenza vaccine for pulmonary administration. Eur. J. Pharm. Biopharm.93, 231–241 (2015).
  • Lakerveld R Kramer HJM Stankiewicz AI Grievink J . Application of generic principles of process intensification to solution crystallization enabled by a task-based design approach. Chemical Engineering and Processing: Process Intensification49 (9), 979–991 (2010).
  • Mullin JW . Crystallization. Butterworth-Heinemann, Oxford, UK (2001).
  • Ragab D Rohani S Samaha MW El-Khawas FM El-Maradny HA . Crystallization of progesterone for pulmonary drug delivery. J. Pharm. Sci.99 (3), 1123–1137 (2010).
  • Sultana S Talegaonkar S Ali R Mittal G Ahmad FJ Bhatnagar A . Inhalation of alendronate nanoparticles as dry powder inhaler for the treatment of osteoporosis. J. Microencapsulation29 (5), 445–454 (2012).
  • Hu TT Zhao H Jiang LC Le Y Chen JF Yun J . Engineering pharmaceutical fine particles of budesonide for dry powder inhalation (DPI). Ind. Eng. Chem. Res.47 (23), 9623–9627 (2008).
  • Kaialy W Ticehurst MD Murphy J Nokhodchi A . Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol-acetone. J. Pharm. Sci.100 (7), 2665–2684 (2011).
  • Stoica C Verwer P Meekes H Van Hoof PJCM Kaspersen FM Vlieg E . Understanding the effect of a solvent on the crystal habit. Cryst. Growth Des.4 (4), 765–768 (2004).
  • Tam JM Mcconville JT Williams RO III Johnston KP . Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J. Pharm. Sci.97 (11), 4915–4933 (2008).
  • Pornputtapitak W El-Gendy N Berkland C . NanoCluster itraconazole formulations provide a potential engineered drug particle approach to generate effective dry powder aerosols. J. Aerosol Med. Pulmon. Drug Deliv.28 (5), 341–352 (2015).
  • Hu J Ng WK Dong Y Shen S Tan RBH . Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int. J. Pharm.404 (1–2), 198–204 (2011).
  • Hu J Dong Y Pastorin G Ng WK Tan RBH . Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers. J. Nanopart. Res.15 (4), 1560 (2013).
  • Lakerveld R Van Krochten JJH Kramer HJM . An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer. Cryst. Growth Des.14 (7), 3264–3275 (2014).
  • Lakerveld R Verzijden NG Kramer H Jansens P Grievink J . Application of ultrasound for start-up of evaporative batch crystallization of ammonium sulfate in a 75-L crystallizer. AlChE J.57 (12), 3367–3377 (2011).
  • Ruecroft G Hipkiss D Ly T Maxted N Cains PW . Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org. Process Res. Dev.9 (6), 923–932 (2005).
  • Gielen B Jordens J Thomassen LCJ Braeken L Van Gerven T . Agglomeration control during ultrasonic crystallization of an active pharmaceutical ingredient. Crystals7 (2), 40 (2017).
  • Wohlgemuth K Kordylla A Ruether F Schembecker G . Experimental study of the effect of bubbles on nucleation during batch cooling crystallization. Chem. Eng. Sci.64 (19), 4155–4163 (2009).
  • Vehring R Foss WR Lechuga-Ballesteros D . Particle formation in spray drying. J. Aerosol Sci.38 (7), 728–746 (2007).
  • Li HY Seville PC Williamson IJ Birchall JC . The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J. Gene Med.7 (3), 343–353 (2005).
  • Cuvelier B Eloy P Loira-Pastoriza C et al. Minimal amounts of dipalmitoylphosphatidylcholine improve aerosol performance of spray-dried temocillin powders for inhalation. Int. J. Pharm.495 (2), 981–990 (2015).
  • Singh A Van Den Mooter G . Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev.100 (Suppl. C), 27–50 (2016).
  • Gradon L Sosnowski TR . Formation of particles for dry powder inhalers. Adv. Powder Technol.25 (1), 43–55 (2014).
  • Newman SP Busse WW . Evolution of dry powder inhaler design, formulation, and performance. Resp. Med.96 (5), 293–304 (2002).
  • Bi R Shao W Wang Q Zhang N . Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J. Drug Targeting16 (9), 639–648 (2008).
  • D'addio SM Chan JGY Kwok PCL Prud'homme RK Chan HK . Constant size, variable density aerosol particles by ultrasonic spray freeze drying. Int. J. Pharm.427 (2), 185–191 (2012).
  • D'addio SM Chan JGY Kwok PCL Benson BR Prud'homme RK Chan HK . Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. Pharm. Res.30 (11), 2891–2901 (2013).
  • Niwa T Shimabara H Kondo M Danjo K . Design of porous microparticles with single-micron size by novel spray freeze-drying technique using four-fluid nozzle. Int. J. Pharm.382 (1–2), 88–97 (2009).
  • Süverkrüp R Eggerstedt S Wanning S Kuschel M Sommerfeld M Lamprecht A . Collisions and coalescence in droplet streams for the production of freeze-dried powders. Colloids and Surfaces B: Biointerfaces141, 443–449 (2016).
  • Wanning S Süverkrüp R Lamprecht A . Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders. Eur. J. Pharm. Sci.96, 1–7 (2017).
  • Wanning S Süverkrüp R Lamprecht A . Pharmaceutical spray freeze drying. Int. J. Pharm.488 (1–2), 136–153 (2015).
  • Wang ZL Finlay WH Peppler MS Sweeney LG . Powder formation by atmospheric spray-freeze-drying. Powder Technol.170 (1), 45–52 (2006).
  • Miyazaki Y Sugihara H Nishiura A Kadota K Tozuka Y Takeuchi H . Application of combinational supercritical CO2 techniques to the preparation of inhalable particles. J. Drug Deliv. Sci. Technol.36, 1–9 (2016).
  • Date AA Patravale VB . Current strategies for engineering drug nanoparticles. Curr. Opin. Coll. Interface Sci.9 (3–4), 222–235 (2004).
  • Thakur R Gupta RB . Rapid expansion of supercritical solution with solid cosolvent (RESS−SC) process: formation of griseofulvin nanoparticles. Ind. Eng. Chem. Res.44 (19), 7380–7387 (2005).
  • Foster NR Sih R . Development of a novel precipitation technique for the production of highly respirable powders: the atomized rapid injection for solvent extraction process. ACS Symp. Ser.1006, 309–347 (2009).
  • Kurniawansyah F Duong HTT Luu TD et al. Inhalable curcumin formulations: micronization and bioassay. Chem. Eng. J.279, 799–808 (2015).
  • Pu Y Li Y Wang D Foster NR Wang JX Chen JF . A green route to beclomethasone dipropionate nanoparticles via solvent anti-solvent precipitation by using subcritical water as the solvent. Powder Technol.308, 200–205 (2017).
  • Reverchon E . Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution. Ind. Eng. Chem. Res.41 (10), 2405–2411 (2002).
  • Cai MQ Guan YX Yao SJ Zhu ZQ . Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride. J. Supercrit. Fluids43 (3), 524–534 (2008).
  • Shen YB Du Z Tang C Guan YX Yao SJ . Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm.505 (1–2), 223–233 (2016).
  • Bałdyga J Czarnocki R Shekunov BY Smith KB . Particle formation in supercritical fluids-scale-up problem. Chem. Eng. Res. Des.88 (3), 331–341 (2010).
  • Johnson KA . Preparation of peptide and protein powders for inhalation. Adv. Drug Deliv. Rev.26 (1), 3–15 (1997).
  • Djokić M Kachrimanis K Solomun L Djuriš J Vasiljević D Ibrić S . A study of jet-milling and spray-drying process for the physicochemical and aerodynamic dispersion properties of amiloride HCl. Powder Technol.262, 170–176 (2014).
  • Lee HJ Kang JH Lee HG et al. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols. Drug Des. Devel. Ther.10, 4017–4030 (2016).
  • Saleem IY Smyth HD . Micronization of a soft material: air-jet and micro-ball milling. AAPS PharmSciTech.11 (4), 1642–1649 (2010).
  • Moura C Neves F Costa E . Impact of jet-milling and wet-polishing size reduction technologies on inhalation API particle properties. Powder Technol.298, 90–98 (2016).
  • Kluge J Muhrer G Mazzotti M . High pressure homogenization of pharmaceutical solids. J. Supercrit. Fluids66, 380–388 (2012).
  • Malamatari M Somavarapu S Taylor KMG Buckton G . Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders. Exp. Opin. Drug Deliv.13 (3), 435–450 (2016).
  • Afolabi A Akinlabi O Bilgili E . Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view. Eur. J. Pharm. Sci.51 (1), 75–86 (2014).
  • Young PM Chan HK Chiou H Edge S Tee THS Traini D . The influence of mechanical processing of dry powder inhaler carriers on drug aerosolization performance. J. Pharm. Sci.96 (5), 1331–1341 (2007).
  • Chan JGY Duke CC Ong HX et al. A novel inhalable form of rifapentine. J. Pharm. Sci.103 (5), 1411–1421 (2014).
  • Shoyele SA Cawthorne S . Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev.58 (9–10), 1009–1029 (2006).
  • Heinemann L . The failure of exubera: are we beating a dead horse?J. Diabetes Sci. Technol. (Online)2 (3), 518–529 (2008).
  • Kumar V Taylor MK Mehrotra A Stagner WC . Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process. AAPS PharmSciTech.14 (2), 523–530 (2013).
  • Agimelen OS Svoboda V Ahmed B et al. Monitoring crystal breakage in wet milling processes using inline imaging and chord length distribution measurements. arXiv preprint arXiv:1703.09186 (2017) ( Epub ahed of print).
  • Liu LX Rashid A Marziano I White ET Howes T Litster JD . Flowability of binary mixtures of commercial and reprocessed ibuprofen through high shear wet milling (HSWM) with lactose. Adv. Powder Technol.23 (4), 454–458 (2012).
  • Sayyed Sallam A Nazzal S Alkhatib HS Darwazeh N . Quality by design: concept for product development of dry-powder inhalers. Pulmonary Drug Delivery: Advances and Challenges. NokhodchiAMartinGP ( Eds). Hoboken, NJ, USA, 321–338 (2015).
  • Arora S Mahajan RR Kushwah V Baradia D Misra A Jain S . Development of voriconazole loaded large porous particles for inhalation delivery: effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Adv.5 (48), 38030–38043 (2015).
  • Ingvarsson PT Yang M Mulvad H Nielsen HM Rantanen J Foged C . Engineering of an inhalable dda/tdb liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process. Pharm. Res.30 (11), 2772–2784 (2013).
  • Karimi K Pallagi E Szabó-Révész P Csóka I Ambrus R . Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach. Drug Des. Devel. Ther.10, 3331 (2016).
  • Patil-Gadhe A Pokharkar V . Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm. Pharmacol. Ther.27 (2), 197–207 (2014).
  • Mascia S Heider PL Zhang H et al. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew. Chem. Int. Ed.52 (47), 12359–12363 (2013).
  • Lawton S Steele G Shering P Zhao L Laird I Ni XW . Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org. Process Res. Dev.13 (6), 1357–1363 (2009).
  • Alvarez AJ Singh A Myerson AS . Crystallization of cyclosporine in a multistage continuous MSMPR crystallizer. Cryst. Growth Des.11 (10), 4392–4400 (2011).
  • Eder RJP Radl S Schmitt E et al. Continuously seeded, continuously operated tubular crystallizer for the production of active pharmaceutical ingredients. Cryst. Growth Des.10 (5), 2247–2257 (2010).
  • Eder RJP Schrank S Besenhard MO Roblegg E Gruber-Woelfler H Khinast JG . Continuous sonocrystallization of acetylsalicylic acid (ASA): control of crystal size. Cryst. Growth Des.12 (10), 4733–4738 (2012).
  • Hadiwinoto GD Kwok PCL Tong HHY Lakerveld R . Continuous crystallization of an active pharmaceutical ingredient for pulmonary drug delivery. Presented at : 20th International Symposium on Industrial Crystallization. Dublin, Ireland, 3–6 September 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.