215
Views
0
CrossRef citations to date
0
Altmetric
Review

Dendritic Polymers for Dermal Drug Delivery

&
Pages 1077-1096 | Received 15 Aug 2017, Accepted 06 Oct 2017, Published online: 10 Nov 2017

References

  • Prausnitz MR Elias PM Franz TJ et al. Skin barrier and transdermal drug delivery. Dermatology3, 2065–2073 (2012).
  • Prausnitz MR Langer R . Transdermal drug delivery. Nature Biotechnol.26 (11), 1261–1268 (2008).
  • Wang JJ Sung KC Huang JF Yeh CH Fang JY . Ester prodrugs of morphine improve transdermal drug delivery: a mechanistic study. J. Pharm. Pharmacol.59 (7), 917–925 (2007).
  • Sung KC Fang JY Hu OY . Delivery of nalbuphine and its prodrugs across skin by passive diffusion and iontophoresis. J. Control. Rel.67 (1), 1–8 (2000).
  • Doh HJ Cho WJ Yong CS et al. Synthesis and evaluation of Ketorolac ester prodrugs for transdermal delivery. J. Pharm. Sci.92 (5), 1008–1017 (2003).
  • Bijaya G Kaushal D Sonal D Pallavi K . Synthesis and evaluation of esmolol prodrugs for transdermal delivery. Drug. Deliv.17 (7), 532–540 (2010).
  • Lademann J Knorr F Richter H et al. Hair follicles–an efficient storage and penetration pathway for topically applied substances. Skin Pharmacol. Physiol.21 (3), 150–155 (2008).
  • Palmer BC Delouise LA . Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules21 (12), (2016).
  • Patzelt A Lademann J . Drug delivery to hair follicles. Expert Opin. Drug Deliv.10 (6), 787–797 (2013).
  • Patzelt A Lademann J . The increasing importance of the hair follicle route in dermal and transdermal drug delivery. In : Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer Berlin Heidelberg, Germany, 43–53 (2015).
  • Crosera M Bovenzi M Maina G et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health82 (9), 1043–1055 (2009).
  • Schaefer H Rodelmeier TE . Principles of percutaneous absorption. Karger Publishers, Basel, Switzerland (1996).
  • Tomalia DA Baker H Dewald J et al. A new class of polymers: starburst-dendritic macromolecules. Polym. J.17 (1), 117–132 (1985).
  • Hawker CJ Frechet JMJ . Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc.112 (21), 7638–7647 (1990).
  • Wu P Feldman AK Nugent AK et al. Efficiency and fidelity in a click–chemistry route to triazole dendrimers by the copper (i)-catalyzed ligation of azides and alkynes. Angew. Chem.116 (30), 4018–4022 (2004).
  • Halford B . Dendrimers branch out. Chem. & Engin. News83 (24), 30–33 (2005).
  • Sharma R Naresh K Chabre YM Rej R Saadeh NK Roy R . ‘Onion peel’ dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polym. Chem.5 (14), 4321–4331 (2014).
  • Valérie Walter M Malkoch M . Accelerated approaches to dendrimers. Materials Science and Technology. Wiley-VCH, Weinheim, Germany (2006).
  • Hourani R Kakkar A . Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun.31 (11), 947–974 (2010).
  • Deng X-X Du F-S Li Z-C . Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity. ACS Macro Lett.3 (7), 667–670 (2014).
  • Sharma A Kakkar A . Designing dendrimer and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules20 (9), 16987–17015 (2015).
  • Nordmeyer D Stumpf P Groger D et al. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents. Nanoscale6 (16), 9646–9654 (2014).
  • Gunduz S Savic T Toljic D Angelovski G . Preparation and in vitro characterization of dendrimer-based contrast agents for magnetic resonance imaging. J. Vis. Exp. doi:10.3791/54776(118) (2016) ( Epub ahead of print).
  • Wang R Luo Y Yang S et al. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci. Rep.6, 33844 (2016).
  • Luong D Sau S Kesharwani P Iyer AK . Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules doi:10.1021/acs.biomac.6b01885 (2017) ( Epub ahead of print).
  • Mekuria SL Debele TA Tsai HC . Encapsulation of gadolinium oxide nanoparticle (Gd2O3) contrasting agents in PAMAM Dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS Appl. Mater. Interfaces9 (8), 6782–6795 (2017).
  • Kobayashi H Brechbiel MW . Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev.57 (15), 2271–2286 (2005).
  • Sun W Li J Shen M Shi X . Dendrimer-based nanodevices as contrast agents for mr imaging applications. In : Advances in Nanotheranostics. Springer, Berlin, Heidelberg, 249–270 (2016).
  • Kojima C Umeda Y Ogawa M Harada A Magata Y Kono K . x-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology21 (24), 245104 (2010).
  • Kojima C Turkbey B Ogawa M et al. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine7 (6), 1001–1008 (2011).
  • Alcala MA Shade CM Uh H et al. Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials32 (35), 9343–9352 (2011).
  • Almutairi A Akers WJ Berezin MY Achilefu S Fréchet JM . Monitoring the biodegradation of dendritic near infrared nanoprobes by in vivo fluorescence imaging. Mol. Pharm.5 (6), 1103 (2008).
  • Zhou Z D'emanuele A Attwood D . Solubility enhancement of paclitaxel using a linear-dendritic block copolymer. Int. J. Pharm.452 (1), 173–179 (2013).
  • Kaminskas LM Mcleod VM Kelly BD et al. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine8 (1), 103–111 (2012).
  • Soto-Castro D Cruz-Morales JA Apan MTR Guadarrama P . Solubilization and anticancer-activity enhancement of Methotrexate by novel dendrimeric nanodevices synthesized in one-step reaction. Bioorg. Chem.41, 13–21 (2012).
  • Malik N Evagorou EG Duncan R . Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs10 (8), 767–776 (1999).
  • Pasut G Scaramuzza S Schiavon O Mendichi R Veronese FM . PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym.20 (3), 213–230 (2005).
  • Yang H Lopina ST . Extended release of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly (ethylene glycol)–containing sem–interpenetrating networks. J. Biomed. Mater. Res. A.72 (1), 107–114 (2005).
  • Najlah M Freeman S Attwood D D'emanuele A . In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm.336 (1), 183–190 (2007).
  • Yang H Lopina ST . Penicillin V-conjugated PEG-PAMAM star polymers. J. Biomater. Sci. Polym. Ed.14 (10), 1043–1056 (2003).
  • D'emanuele A Jevprasesphant R Penny J Attwood D . The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release95 (3), 447–453 (2004).
  • Kurtoglu YE Navath RS Wang B Kannan S Romero R Kannan RM . Poly (amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials30 (11), 2112–2121 (2009).
  • Kurtoglu YE Mishra MK Kannan S Kannan RM . Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int. J. Pharm.384 (1), 189–194 (2010).
  • Lee CC Gillies ER Fox ME et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci.103 (45), 16649–16654 (2006).
  • Mishra MK Kotta K Hali M et al. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine7 (6), 935–944 (2011).
  • Najlah M Freeman S Attwood D D'emanuele A . Synthesis, characterization and stability of dendrimer prodrugs. Int. J. Pharm.308 (1), 175–182 (2006).
  • Chung HH Harms G Min Seong C et al. Dendritic oligoguanidines as intracellular translocators. Pept. Sci.76 (1), 83–96 (2004).
  • Wender PA Kreider E Pelkey ET Rothbard J Vandeusen CL . Dendrimeric molecular transporters: synthesis and evaluation of tunable polyguanidino dendrimers that facilitate cellular uptake. Org. Lett.7 (22), 4815–4818 (2005).
  • Bonduelle CV Gillies ER . Dendritic guanidines as efficient analogues of cell penetrating peptides. Pharmaceuticals3 (3), 636–666 (2010).
  • Wender PA Galliher WC Goun EA Jones LR Pillow TH . The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Deliv. Rev.60 (4), 452–472 (2008).
  • Yellepeddi VK Ghandehari H . Poly(amido amine) dendrimers in oral delivery. Tissue Barriers4 (2), e1173773 (2016).
  • Choudhary S Gupta L Rani S Dave K Gupta U . Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol.8, 261 (2017).
  • Chauhan AS Sridevi S Chalasani KB et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release90 (3), 335–343 (2003).
  • De Queiroz AaA Abraham GA Camillo MaP et al. Physicochemical and antimicrobial properties of boron-complexed polyglycerol–chitosan dendrimers. J. Biomater. Sci. Polym. Ed.17 (6), 689–707 (2006).
  • Tam JP Lu YA Yang JL . Antimicrobial dendrimeric peptides. Eur. J. Biochem.269 (3), 923–932 (2002).
  • Xue X Chen X Mao X et al. Amino-terminated generation 2 poly (amidoamine) dendrimer as a potential broad-spectrum, nonresistance-inducing antibacterial agent. AAPS J.15 (1), 132–142 (2013).
  • Madaan K Kumar S Poonia N Lather V Pandita D . Dendrimers in drug delivery and targeting: drug–dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci.6 (3), 139 (2014).
  • Pryor JB Harper BJ Harper SL . Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. Int. J. Nanomedicine9, 1947–1956 (2014).
  • Luganini A Nicoletto SF Pizzuto L et al. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother.55 (7), 3231–3239 (2011).
  • Klajnert B Cladera J Bryszewska M . Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules7 (7), 2186–2191 (2006).
  • Türk H Haag R Alban S . Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug. Chem.15 (1), 162–167 (2004).
  • DuráN-Lara EF Marple JL Giesen JA et al. Investigation of lysine-functionalized dendrimers as dichlorvos detoxification agents. Biomacromolecules16 (11), 3434–3444 (2015).
  • Yoo H Juliano RL . Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res.28 (21), 4225–4231 (2000).
  • Sun M Fan A Wang Z Zhao Y . Dendrimer-mediated drug delivery to the skin. Soft Matter8 (16), 4301–4305 (2012).
  • Lademann J Richter H Teichmann A et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm.66 (2), 159–164 (2007).
  • Venuganti VV Sahdev P Hildreth M Guan X Perumal O . Structure–skin permeability relationship of dendrimers. Pharm. Res.28 (9), 2246 (2011).
  • Venuganti VVK Perumal OP . Poly (amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J. Pharm. Sci.98 (7), 2345–2356 (2009).
  • Cevc G Vierl U . Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J. Control. Rel.141 (3), 277–299 (2010).
  • Peck KD Ghanem A-H Higuchi WI . Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm. Res.11 (9), 1306–1314 (1994).
  • Aguilella V Kontturi K Murtomäki L Ramírez P . Estimation of the pore size and charge density in human cadaver skin. J. Control. Rel.32 (3), 249–257 (1994).
  • Inamori T Ghanem A-H Higuchi WI Srinivasan V . Macromolecule transport in and effective pore size of ethanol pretreated human epidermal membrane. Int. J. Pharm.105 (2), 113–123 (1994).
  • Cevc G . Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst.13 (3–4), 257–388 (1996).
  • Li SK Ghanem AH Peck KD Higuchi WI . Pore induction in human epidermal membrane during low to moderate voltage iontophoresis: A study using AC iontophoresis. J. Pharm. Sci.88 (4), 419–427 (1999).
  • Tezel A Sens A Mitragotri S . Description of transdermal transport of hydrophilic solutes during low–frequency sonophoresis based on a modified porous pathway model. J. Pharm. Sci.92 (2), 381–393 (2003).
  • Venuganti VVK Perumal OP . Effect of poly (amidoamine)(PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int. J. Pharm.361 (1), 230–238 (2008).
  • Borowska K Wołowiec S Rubaj A Głowniak K Sieniawska E Radej S . Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene–in vivo study. Int. J. Pharm.426 (1), 280–283 (2012).
  • Yang Y Sunoqrot S Stowell C et al. Effect of size, surface charge, and hydrophobicity of poly (amidoamine) dendrimers on their skin penetration. Biomacromolecules13 (7), 2154 (2012).
  • Tajarobi F El-Sayed M Rege BD Polli JE Ghandehari H . Transport of poly amidoamine dendrimers across Madin-Darby canine kidney cells. Int. J. Pharm.215 (1–2), 263–267 (2001).
  • Jevprasesphant R Penny J Attwood D Mckeown NB D'emanuele A . Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res.20 (10), 1543–1550 (2003).
  • Ionov M Gardikis K Wrobel D et al. Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids Surf. B Biointerfaces82 (1), 8–12 (2011).
  • Dobrovolskaia MA Patri AK Simak J et al. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm.9 (3), 382 (2012).
  • El-Sayed M Ginski M Rhodes C Ghandehari H . Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release81 (3), 355–365 (2002).
  • El-Sayed M Rhodes CA Ginski M Ghandehari H . Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm.265 (1–2), 151–157 (2003).
  • El-Sayed M Ginski M Rhodes CA Ghandehari H . Influence of surface chemistry of poly (amidoamine) dendrimers on Caco-2 cell monolayers. J. Bioact. Compat. Polym.18 (1), 7–22 (2003).
  • Kitchens KM Kolhatkar RB Swaan PW Eddington ND Ghandehari H . Transport of poly (amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm. Res.23 (12), 2818–2826 (2006).
  • Kitchens KM Foraker AB Kolhatkar RB Swaan PW Ghandehari H . Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res.24 (11), 2138–2145 (2007).
  • Kolhatkar RB Kitchens KM Swaan PW Ghandehari H . Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug. Chem.18 (6), 2054–2060 (2007).
  • Sadekar S Ghandehari H . Transepithelial transport and toxicity of pamam dendrimers: implications for oral drug delivery. Adv. Drug Deliv. Rev.64 (6), 571–588 (2012).
  • Wiwattanapatapee R Carreno-Gomez B Malik N Duncan R . Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system?Pharm. Res.17 (8), 991–998 (2000).
  • Devarakonda B Li N De Villiers MM . Effect of polyamidoamine (PAMAM) dendrimers on the in vitro release of water-insoluble nifedipine from aqueous gels. AAPS PharmSciTech6 (3), E504–E512 (2005).
  • Ooya T Lee J Park K . Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjug. Chem.15 (6), 1221–1229 (2004).
  • Sloan KB Wasdo SC Rautio J . Design for optimized topical delivery: prodrugs and a paradigm change. Pharm. Res.23 (12), 2729–2747 (2006).
  • Cheng Y Man N Xu T et al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci.96 (3), 595–602 (2007).
  • Yang W Li Y Cheng Y Wu Q Wen L Xu T . Evaluation of phenylbutazone and poly(amidoamine) dendrimers interactions by a combination of solubility, 2D-NOESY NMR, and isothermal titration calorimetry studies. J. Pharm. Sci.98 (3), 1075–1085 (2009).
  • Filipowicz A Wołowiec S . Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int. J. Pharm.408 (1), 152–156 (2011).
  • Küchler S Radowski MR Blaschke T et al. Nanoparticles for skin penetration enhancement–a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm.71 (2), 243–250 (2009).
  • Buczkowski A Urbaniak P Palecz B . Thermochemical and spectroscopic studies on the supramolecular complex of PAMAM-NH(2) G4 dendrimer and 5-fluorouracil in aqueous solution. Int. J. Pharm.428 (1–2), 178–182 (2012).
  • Potts RO Guy RH . Predicting skin permeability. Pharm. Res.9 (5), 663–669 (1992).
  • Yao WJ Sun KX Liu Y et al. Effect of poly(amidoamine) dendrimers on corneal penetration of puerarin. Biol. Pharm. Bull.33 (8), 1371–1377 (2010).
  • Yoshida NH Roberts MS . Solute molecular size and transdermal iontophoresis across excised human skin. J. Control. Rel.25 (3), 177–195 (1993).
  • Turner NG Ferry L Price M Cullander C Guy RH . Iontophoresis of poly-L-lysines: the role of molecular weight?Pharm. Res.14 (10), 1322–1331 (1997).
  • Smyth HD Becket G Mehta S . The influence of porosity changes in human epidermal membrane during iontophoresis on the permeability enhancement of a model peptide. Drug Dev. Ind. Pharm.35 (10), 1201–1209 (2009).
  • Inada H Ghanem A-H Higuchi WI . Studies on the effects of applied voltage and duration on human epidermal membrane alteration/recovery and the resultant effects upon iontophoresis. Pharm. Res.11 (5), 687–697 (1994).
  • Manabe E Numajiri S Sugibayashi K Morimoto Y . Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory. J. Control. Rel.66 (2), 149–158 (2000).
  • Venuganti VVK Saraswathy M Dwivedi C Kaushik RS Perumal OP . Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide–dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale7 (9), 3903–3914 (2015).
  • Mutalik S Parekh H Anissimov YG Grice J Roberts M . Iontophoresis-mediated transdermal permeation of peptide dendrimers across human epidermis. Skin pharmacol. Physiol.26 (3), 127–138 (2013).
  • Manikkath J Hegde AR Kalthur G Parekh HS Mutalik S . Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int. J. Pharm.521 (1), 110–119 (2017).
  • Huang B Dong W-J Yang G-Y Wang W Ji C-H Zhou F-N . Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des. Devel. Ther.9, 3867 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.