325
Views
3
CrossRef citations to date
0
Altmetric
Review

Formulation of RNA interference-based Drugs for Pulmonary delivery: Challenges and Opportunities

, , , &
Pages 731-749 | Received 09 May 2018, Accepted 14 Aug 2018, Published online: 02 Oct 2018

References

  • Phimister EG Feero WG Guttmacher AE . Realizing genomic medicine. N. Engl. J. Med.366 (8), 757–759 (2012).
  • Hannon GJ Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature431 (7006), 371–378 (2004).
  • Mattick JS Makunin IV . Non-coding RNA. Hum. Mol. Genet. 15 Spec No. 1, R17–R29 (2006).
  • Daka A Peer D . RNAi-based nanomedicines for targeted personalized therapy. Adv. Drug Deliv. Rev.64 (13), 1508–1521 (2012).
  • Lam JK Chow MY Zhang Y Leung SW . SiRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids4, e252 (2015).
  • Rupaimoole R Slack FJ . MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov.16 (3), 203–222 (2017).
  • Lim LP Lau NC Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433 (7027), 769–773 (2005).
  • Birchall J . Pulmonary delivery of nucleic acids. Expert Opin. Drug Deliv.4 (6), 575–578 (2007).
  • Forbes B O'lone R Allen PP et al. Challenges for inhaled drug discovery and development: induced alveolar macrophage responses. Adv. Drug Deliv. Rev.71, 15–33 (2014).
  • Qiu Y Lam JK Leung SW Liang W . Delivery of RNAi therapeutics to the airways-from bench to bedside. Molecules21 (9), (2016).
  • Metzger WJ Nyce JW . Respirable antisense oligonucleotide (RASON) therapy for allergic asthma. BioDrugs12 (4), 237–243 (1999).
  • Nyce JW . Respirable antisense oligonucleotides as novel therapeutic agents for asthma and other pulmonary diseases. Expert Opin. Investig. Drugs6 (9), 1149–1156 (1997).
  • Ball HA Sandrasagra A Tang L Van Scott M Wild J Nyce JW . Clinical potential of respirable antisense oligonucleotides (RASONs) in asthma. Am. J. Pharmacogenomics3 (2), 97–106 (2003).
  • Liao WP Dong JR Peh HY et al. Oligonucleotide therapy for obstructive and restrictive respiratory diseases. Molecules22 (1), pii: E139 (2017).
  • Guimond A Viau E Aube P Renzi PM Paquet L Ferrari N . Advantageous toxicity profile of inhaled antisense oligonucleotides following chronic dosing in non-human primates. Pulm. Pharmacol. Ther.21 (6), 845–854 (2008).
  • Imaoka H Campbell H Babirad I et al. Tpi asm8 reduces eosinophil progenitors in sputum after allergen challenge. Clin. Exp. Allergy41 (12), 1740–1746 (2011).
  • FeRNAndo FS Khachigian LM . Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis. J. Mol. Med.79 (12), 695–706 (2001).
  • Greulich T Hohlfeld JM Neuser P et al. A GATA3-specific dnazyme attenuates sputum eosinophilia in eosinophilic copd patients: a feasibility randomized clinical trial. Respir. Res.19 (1), 55 (2018).
  • Fujita Y Takeshita F Kuwano K Ochiya T . RNAi therapeutic platforms for lung diseases. Pharmaceuticals6 (2), 223–250 (2013).
  • Labiris NR Dolovich MB . Pulmonary drug delivery. Part i: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol.56 (6), 588–599 (2003).
  • Paranjpe M Muller-Goymann CC . Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci.15 (4), 5852–5873 (2014).
  • Smola M Vandamme T Sokolowski A . Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine3 (1), 1 (2008).
  • Merkel OM Kissel T . Nonviral pulmonary delivery of siRNA. Acc. Chem. Res.45 (7), 961–970 (2012).
  • Whitsett JA . Intrinsic and innate defenses in the lung: intersection of pathways regulating lung morphogenesis, host defense, and repair. J. Clin. Invest.109 (5), 565–569 (2002).
  • Blank F Fytianos K Seydoux E et al. Interaction of biomedical nanoparticles with the pulmonary immune system. J. Nanobiotechnol.15 (1), 6 (2017).
  • Rubin BK . Secretion properties, clearance, and therapy in airway disease. Transl. Respir. Med.2, 6 (2014).
  • Foged C . Thermostable subunit vaccines for pulmonary delivery: how close are we?Curr. Pharm. Des.22 (17), 2561–2576 (2016).
  • Kingma PS Whitsett JA . In defense of the lung: surfactant protein a and surfactant protein D. Curr. Opin. Pharmacol.6 (3), 277–283 (2006).
  • Ferguson JS Schlesinger LS . Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber. Lung Dis.80 (4–5), 173–184 (2000).
  • Lopez-Rodriguez E Perez-Gil J . Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim. Biophys. Acta1838 (6), 1568–1585 (2014).
  • Monopoli MP Aberg C Salvati A Dawson KA . Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol.7 (12), 779–786 (2012).
  • Hu Q Bai X Hu G Zuo YY . Unveiling the molecular structure of pulmonary surfactant corona on nanoparticles. ACS Nano.11 (7), 6832–6842 (2017).
  • Hivroz C Chemin K Tourret M Bohineust A . Crosstalk between t lymphocytes and dendritic cells. Crit. Rev. Immunol.32 (2), 139–155 (2012).
  • Webb TJ Sumpter TL Thiele AT Swanson KA Wilkes DS . The phenotype and function of lung dendritic cells. Crit. Rev. Immunol.25 (6), 465–491 (2005).
  • Kawai T Akira S . The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol.11 (5), 373–384 (2010).
  • Akira S Uematsu S Takeuchi O . Pathogen recognition and innate immunity. Cell124 (4), 783–801 (2006).
  • Akira S Takeda K . Toll-like receptor signalling. Nat. Rev. Immunol.4 (7), 499–511 (2004).
  • Nayak S Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Ther.17 (3), 295–304 (2010).
  • Thanki K Falkenberg E Gangloff M Foged C . Immune reactions in the delivery of RNA interference-based therapeutics: mechanisms and opportunities. In : Immune Effects of Biopharmaceuticals and Nanomedicine. BawaRSzebeniJWebsterTAudetteG ( Eds). Pan Stanford Publishing Pte. Ltd, Singapore, 1–32 (2017).
  • Watts JK Deleavey GF Damha MJ . Chemically modified siRNA: tools and applications. Drug Discov. Today13 (19–20), 842–855 (2008).
  • Behlke MA . Chemical modification of siRNAs for in vivo use. Oligonucleotides18 (4), 305–319 (2008).
  • Bramsen JB Kjems J . Development of therapeutic-grade small interfering RNAs by chemical engineering. Front. Genet.3, 154 (2012).
  • Eberle F Giessler K Deck C et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol.180 (5), 3229–3237 (2008).
  • Backer J Marchal T . Taming the cost of respiratory drug development (2010). https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v4-i2-taming-cost-of-respiratory-drug-development.pdf.
  • Gutbier B Kube SM Reppe K et al. Rnai-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice. Pulm. Pharmacol. Ther.23 (4), 334–344 (2010).
  • Geyer A Lorenzer C Gehrig S et al. Fluorescence- and computed tomography for assessing the biodistribution of siRNA after intratracheal application in mice. Int. J. Pharm.525 (2), 359–366 (2017).
  • Uemura Y Hagiwara K Kobayashi K . The intratracheal administration of locked nucleic acid containing antisense oligonucleotides induced gene silencing and an immune-stimulatory effect in the murine lung. PLoS ONE12 (11), e0187286 (2017).
  • Davis ME . Non-viral gene delivery systems. Curr. Opin. Biotechnol.13 (2), 128–131 (2002).
  • Putnam D . Polymers for gene delivery across length scales. Nat. Mater.5 (6), 439–451 (2006).
  • Boussif O Lezoualch F Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo – polyethylenimine. Proc. Natl Acad. Sci. USA92 (16), 7297–7301 (1995).
  • Di Gioia S Conese M . Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. Drug Des. Devel. Ther.2, 163–188 (2009).
  • Richard I Thibault M De Crescenzo G Buschmann MD Lavertu M . Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules14 (6), 1732–1740 (2013).
  • Haensler J Szoka FC Jr . Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem.4 (5), 372–379 (1993).
  • Yamagata M Kawano T Shiba K Mori T Katayama Y Niidome T . Structural advantage of dendritic poly(l-lysine) for gene delivery into cells. Bioorganic Med. Chem.15 (1), 526–532 (2007).
  • Tong H Wang C Huang Y et al. Polyethylenimine600-beta-cyclodextrin: a promising nanopolymer for nonviral gene delivery of primary mesenchymal stem cells. Int. J. Nanomedicine8, 1935–1946 (2013).
  • Kichler A Leborgne C Danos O Bechinger B . Characterization of the gene transfer process mediated by histidine-rich peptides. J. Mol. Med.85 (2), 191–201 (2007).
  • Nel AE Madler L Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.8 (7), 543–557 (2009).
  • Kim BJ Cho SW Jeon YJ et al. Intranasal delivery of duox2 DNA using cationic polymer can prevent acute influenza a viral infection in vivo lung. Appl. Microbiol. Biotechnol.102 (1), 105–115 (2018).
  • Godbey WT Wu KK Mikos AG . Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res.45 (3), 268–275 (1999).
  • Son S Namgung R Kim J Singha K Kim WJ . Bioreducible polymers for gene silencing and delivery. Acc. Chem. Res.45 (7), 1100–1112 (2012).
  • Petersen H Kunath K Martin AL et al. Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules3 (5), 926–936 (2002).
  • Kichler A Chillon M Leborgne C Danos O Frisch B . Intranasal gene delivery with a polyethylenimine-PEG conjugate. J. Control. Rel.81 (3), 379–388 (2002).
  • Yang J Hendricks W Liu GS et al. A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proc. Natl Acad. Sci. USA110 (36), 14717–14722 (2013).
  • Benns JM Maheshwari A Furgeson DY Mahato RI Kim SW . Folate-PEG-folate-graft-polyethylenimine-based gene delivery. J. Drug Target.9 (2), 123–139 (2001).
  • Sagara K Kim SW . A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J. Control. Release79 (1–3), 271–281 (2002).
  • Merdan T Callahan J Petersen H et al. Pegylated polyethylenimine-fab’ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug. Chem.14 (5), 989–996 (2003).
  • Thomas M Klibanov AM . Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA99 (23), 14640–14645 (2002).
  • Lee M Rentz J Han SO Bull DA Kim SW . Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther.10 (7), 585–593 (2003).
  • Merkel OM Beyerle A Librizzi D et al. Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Mol. Pharm.6 (4), 1246–1260 (2009).
  • Beyerle A Braun A Merkel O Koch F Kissel T Stoeger T . Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J. Control. Rel.151 (1), 51–56 (2011).
  • Grosse S Aron Y Honore I et al. Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes. J. Gene Med.6 (3), 345–356 (2004).
  • Grosse S Thevenot G Aron Y et al. In vivo gene delivery in the mouse lung with lactosylated polyethylenimine, questioning the relevance of in vitro experiments. J. Control. Rel.132 (2), 105–112 (2008).
  • Qiu YS Chow MYT Liang WL Chung WWY Mak JCW Lam JKW . From pulmonary surfactant, synthetic kl4 peptide as effective siRNA delivery vector for pulmonary delivery. Mol. Pharm.14 (12), 4606–4617 (2017).
  • Bohr A Tsapis N Andreana I et al. Anti-inflammatory effect of anti-TNF-alpha siRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules18 (8), 2379–2388 (2017).
  • Feldmann DP Cheng Y Kandil R et al. In vitro and in vivo delivery of siRNA via viper polymer system to lung cells. J. Control. Rel.276, 50–58 (2018).
  • Du J Xu Z Liu Q et al. Atg101 single-stranded antisense RNA-loaded triangular DNA nanoparticles control human pulmonary endothelial growth via regulation of cell macroautophagy. ACS Appl. Mater. Interfaces9 (49), 42544–42555 (2017).
  • De Backer L Braeckmans K Stuart MC Demeester J De Smedt SC Raemdonck K . Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Rel.206, 177–186 (2015).
  • Taratula O Kuzmov A Shah M Garbuzenko OB Minko T . Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Rel.171 (3), 349–357 (2013).
  • Schlosser K Taha M Stewart DJ . Systematic assessment of strategies for lung-targeted delivery of microRNA mimics. Theranostics8 (5), 1213–1226 (2018).
  • Yan YF Liu L Xiong H et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc. Natl Acad. Sci. Usa113 (39), E5702–E5710 (2016).
  • Yan YF Xiong H Zhang XY Cheng Q Siegwart DJ . Systemic mRNA delivery to the lungs by functional polyester-based carriers. Biomacromolecules18 (12), 4307–4315 (2017).
  • Yan Y Xue L Miller JB et al. One-pot synthesis of functional poly(amino ester sulfide)s and utility in delivering pdna and siRNA. Polymer72, 271–280 (2015).
  • Yan YF Siegwart DJ . Scalable synthesis and derivation of functional polyesters bearing ene and epoxide side chains. Polym. Chem.5 (4), 1362–1371 (2014).
  • Yan Y Zhou K Xiong H et al. Aerosol delivery of stabilized polyester–siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials118, 84–93 (2017).
  • Eltoukhy AA Siegwart DJ Alabi CA Rajan JS Langer R Anderson DG . Effect of molecular weight of amine end-modified poly(beta-amino ester)s on gene delivery efficiency and toxicity. Biomaterials33 (13), 3594–3603 (2012).
  • Kaczmarek JC Patel AK Kauffman KJ et al. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. Engl.55 (44), 13808–13812 (2016).
  • Polach KJ Matar M Rice J et al. Delivery of siRNA to the mouse lung via a functionalized lipopolyamine. Mol. Pharm.20 (1), 91–100 (2012).
  • Mclendon JM Joshi SR Sparks J et al. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J. Control. Rel.210, 67–75 (2015).
  • Li W Szoka FC Jr . Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res.24 (3), 438–449 (2007).
  • Arruda DC Hoffmann C Charrueau C Bigey P Escriou V . Innovative nonviral vectors for small-interfering RNA delivery and therapy. In : Nanostructures for Novel Therapy. FicaiDGrumezescuA ( Eds). Elsevier Inc., Amsterdam, Netherlands, 713–740 (2017).
  • Dan N Danino D . Structure and kinetics of lipid-nucleic acid complexes. Adv. Colloid Interface Sci.205, 230–239 (2014).
  • Lv HT Zhang SB Wang B Cui SH Yan J . Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Rel.114 (1), 100–109 (2006).
  • Farhood H Serbina N Huang L . The role of dioleoyl phosphatidylethanolamine in cationic liposome-mediated gene-transfer. Biochim. Biophys. Acta Biomembr.1235 (2), 289–295 (1995).
  • Zabner J . Cationic lipids used in gene transfer. Adv. Drug Deliv. Rev.27 (1), 17–28 (1997).
  • Heyes J Palmer L Bremner K Maclachlan I . Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Rel.107 (2), 276–287 (2005).
  • Akinc A Zumbuehl A Goldberg M et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol.26 (5), 561–569 (2008).
  • Love KT Mahon KP Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107 (5), 1864–1869 (2010).
  • Goldberg M . Lipidoids: a combinatorial approach to siRNA delivery. In : RNA interference from Biology to Therapeutics. HowardK ( Ed.). Springer, Boston, MA, USA, 143–160 (2013).
  • De Groot AM Thanki K Gangloff M et al. Immunogenicity testing of lipidoids in vitro and in silico: modulating lipidoid-mediated tlr4 activation by nanoparticle design. Mol. Ther. Nucleic Acids11, 159–169 (2018).
  • Thanki K Zeng X Justesen S et al. Engineering of small interfering RNA-loaded lipidoid-poly(dl-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: a quality by design-based approach. Eur. J. Pharm. Biopharm.120, 22–33 (2017).
  • Semple SC Akinc A Chen J et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28 (2), 172–176 (2010).
  • Karras JG Geary RS Gregory SA . Inhaled antisense oligonucleotide therapies: inspiration and progress. Drug Discov. Today3 (3), 335–341 (2006).
  • Brain JD Valberg PA . Deposition of aerosol in the respiratory tract. Am. Rev. Respir. Dis.120 (6), 1325–1373 (1979).
  • Sung JC Pulliam BL Edwards DA . Nanoparticles for drug delivery to the lungs. Trends. Biotechnol.25 (12), 563–570 (2007).
  • Lippmann M Yeates DB Albert RE . Deposition, retention, and clearance of inhaled particles. Br. J. Ind. Med.37 (4), 337–362 (1980).
  • Pilcer G Amighi K . Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm.392 (1–2), 1–19 (2010).
  • Mainelis G Seshadri S Garbuzenko OB Han T Wang Z Minko T . Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice. J. Aerosol. Med. Pulm. Drug Deliv.26 (6), 345–354 (2013).
  • Conti DS Brewer D Grashik J Avasarala S Da Rocha SRP . Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol. Pharm.11 (6), 1808–1822 (2014).
  • Newman SP . Therapeutic inhalation agents and devices–effectiveness in asthma and bronchitis. Postgrad. Med.76 (5), 194–203 (1984).
  • Mangal S Gao W Li TL Zhou Q . Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol. Sin.38 (6), 782–797 (2017).
  • Bielski E Zhong Q Mirza H et al. Tpp-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int. J. Pharm.527 (1–2), 171–183 (2017).
  • Yang X Xu Y Cai Y Li H . Novel nano-spray-dried powders for efficient pulmonary drug delivery. J. Control. Rel.213, e117–118 (2015).
  • Seville PC Li HY Learoyd TP . Spray-dried powders for pulmonary drug delivery. Crit. Rev. Ther. Drug Carrier Syst.24 (4), 307–360 (2007).
  • Bosquillon C Lombry C Preat V Vanbever R . Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J. Control. Rel.70 (3), 329–339 (2001).
  • Vehring R . Pharmaceutical particle engineering via spray drying. Pharm. Res.25 (5), 999–1022 (2008).
  • Chow MYT Qiu YS Lo FFK et al. Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer. Int. J. Pharm.530 (1–2), 40–52 (2017).
  • Patil HP Murugappan S De Vries-Idema J et al. Comparison of adjuvants for a spray freeze-dried whole inactivated virus influenza vaccine for pulmonary administration. Eur. J. Pharm. Biopharm.93, 231–241 (2015).
  • Schulze J Kuhn S Hendrikx S Schulz-Siegmund M Polte T Aigner A . Spray-dried nanoparticle-in-microparticle delivery systems (NIMDs) for gene delivery, comprising polyethylenimine (pei)-based nanoparticles in a poly(vinyl alcohol) matrix. Small14 (12), e1701810 (2018).
  • Liang WL Kwok PCL Chow MYT et al. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. Eur. J. Pharm. Biopharm.86 (1), 64–73 (2014).
  • Jensen DK Jensen LB Koocheki S et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Control. Rel.157 (1), 141–148 (2012).
  • Mohajel N Najafabadi AR Azadmanesh K et al. Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int. J. Pharm.423 (2), 577–585 (2012).
  • Kasai T Gotoh K Nishizawa T et al. Development of a new multi-walled carbon nanotube (MWCNT) aerosol generation and exposure system and confirmation of suitability for conducting a single-exposure inhalation study of MWCNT in rats. Nanotoxicology8 (2), 169–178 (2014).
  • Kasai T Umeda Y Ohnishi M et al. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology9 (4), 413–422 (2015).
  • Arold SP Rosa D Saia FA et al. ISPERSE: a novel inhaled dry powder delivery platform for the delivery of large molecule drugs to the lung for local and systemic treatments. Am. Thorac. Soc.San Francisco, CA, USA, May 18–23 (2012).
  • Yi J Chen BT Schwegler-Berry D et al. Whole-body nanoparticle aerosol inhalation exposures. J. Vis. Exp. (75), e50263 (2013).
  • Nichols CE Shepherd DL Hathaway QA et al. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology12 (1), 32–48 (2018).
  • Phillips JE Zhang X Johnston JA . Dry powder and nebulized aerosol inhalation of pharmaceuticals delivered to mice using a nose-only exposure system. J. Vis. Exp. doi:10.3791/55454(122) (2017) ( Epub ahead of print).
  • Pujalte I Serventi A Noel A Dieme D Haddad S Bouchard M . Characterization of aerosols of titanium dioxide nanoparticles following three generation methods using an optimized aerosolization system designed for experimental inhalation studies. Toxics5 (3), 14 (2017).
  • Sellers S Horodnik W House A Wylie J Mauser P Donovan B . The in vitro and in vivo investigation of a novel small chamber dry powder inhalation delivery system for preclinical dosing to rats. Inhal. Toxicol.27 (13), 706–716 (2015).
  • Zhang XD Fedan JS Lewis DM Siegel PD . Asthmalike biphasic airway responses in brown norway rats sensitized by dermal exposure to dry trimellitic anhydride powder. J. Allergy Clin. Immunol.113 (2), 320–326 (2004).
  • Pauluhn J Thiel A . A simple approach to validation of directed-flow nose-only inhalation chambers. J. Appl. Toxicol.27 (2), 160–167 (2007).
  • Carvalho SR Watts AB Peters JI et al. Characterization and pharmacokinetic analysis of crystalline versus amorphous rapamycin dry powder via pulmonary administration in rats. Eur. J. Pharm. Biopharm.88 (1), 136–147 (2014).
  • Kirkpatrick WR Najvar LK Vallor AC et al. Prophylactic efficacy of single dose pulmonary administration of amphotericin B inhalation powder in a guinea pig model of invasive pulmonary aspergillosis. J. Antimicrob. Chemother.67 (4), 970–976 (2012).
  • Fioni A Selg E Cenacchi V et al. Investigation of lung pharmacokinetic of the novel PDE4 inhibitor chf6001 in preclinical models: evaluation of the precise inhale technology. J. Aerosol. Med. Pulm. Drug Deliv.31 (1), 61–70 (2018).
  • Garcia-Contreras L Padilla-Carlin DJ Sung J et al. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J. Pharm. Sci.106 (1), 331–337 (2017).
  • Zijlstra GS Brandsma CA Harpe MF et al. Dry powder inhalation of hemin to induce heme oxygenase expression in the lung. Eur. J. Pharm. Biopharm.67 (3), 667–675 (2007).
  • Kaur J Muttil P Verma RK et al. A hand-held apparatus for ‘nose-only’ exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. Eur. J. Pharm. Sci.34 (1), 56–65 (2008).
  • Muttil P Kaur J Kumar K Yadav AB Sharma R Misra A . Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci.32 (2), 140–150 (2007).
  • Verma RK Kaur J Kumar K Yadav AB Misra A . Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Antimicrob. Agents Chemother.52 (9), 3195–3201 (2008).
  • Durham PG Young EF Braunstein MS Welch JT Hickey AJ . A dry powder combination of pyrazinoic acid and its n-propyl ester for aerosol administration to animals. Int. J. Pharm.514 (2), 384–391 (2016).
  • Sinha B Mukherjee B . Development of an inhalation chamber and a dry powder inhaler device for administration of pulmonary medication in animal model. Drug Dev. Ind. Pharm.38 (2), 171–179 (2012).
  • Codrons V Vanderbist F Ucakar B Preat V Vanbever R . Impact of formulation and methods of pulmonary delivery on absorption of parathyroid hormone (1–34) from rat lungs. J. Pharm. Sci.93 (5), 1241–1252 (2004).
  • Duret C Wauthoz N Merlos R et al. In vitro and in vivo evaluation of a dry powder endotracheal insufflator device for use in dose-dependent preclinical studies in mice. Eur. J. Pharm. Biopharm.81 (3), 627–634 (2012).
  • Gaspar MC Gregoire N Sousa JJ et al. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release plga microspheres. Eur. J. Pharm. Sci.93, 184–191 (2016).
  • Sullivan BP El-Gendy N Kuehl C Berkland C . Pulmonary delivery of vancomycin dry powder aerosol to intubated rabbits. Mol. Pharm.12 (8), 2665–2674 (2015).
  • Codrons V Vanderbist F Verbeeck RK et al. Systemic delivery of parathyroid hormone (1–34) using inhalation dry powders in rats. J. Pharm. Sci.92 (5), 938–950 (2003).
  • Grainger CI Alcock R Gard TG et al. Administration of an insulin powder to the lungs of cynomolgus monkeys using a penn century insufflator. Int. J. Pharm.269 (2), 523–527 (2004).
  • Beinborn NA Du J Wiederhold NP Smyth HD Williams RO 3rd . Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice. Eur. J. Pharm. Biopharm.81 (3), 600–608 (2012).
  • Selg E Ewing P Acevedo F Sjoberg CO Ryrfeldt A Gerde P . Dry powder inhalation exposures of the endotracheally intubated rat lung, ex vivo and in vivo: the pulmonary pharmacokinetics of fluticasone furoate. J. Aerosol. Med. Pulm. Drug Deliv.26 (4), 181–189 (2013).
  • Sellers S Horodnik W House A et al. The in vitro and in vivo investigation of inhaled migraine therapies using a novel aerosol delivery system consisting of an air pressurized capsule device (APCD) in combination with a PMDI spacer for endotracheal dosing into beagle dogs. Drug Dev. Ind. Pharm.41 (12), 1989–1996 (2015).
  • Tonnis WF Bagerman M Weij M et al. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals. Eur. J. Pharm. Biopharm.88 (3), 1056–1063 (2014).
  • Kuehl PJ Barrett EG Mcdonald JD et al. Formulation development and in vivo evaluation of a new dry powder formulation of albuterol sulphate in beagle dogs. Pharm. Res.27 (5), 894–904 (2010).
  • Okamoto H Aoki M Danjo K . A novel apparatus for rat in vivo evaluation of dry powder formulations for pulmonary administration. J. Pharm. Sci.89 (8), 1028–1035 (2000).
  • Hamishehkar H Emami J Najafabadi AR et al. Pharmacokinetics and pharmacodynamics of controlled release insulin loaded plga microcapsules using dry powder inhaler in diabetic rats. Biopharm. Drug Dispos.31 (2–3), 189–201 (2010).
  • Okuda T Suzuki Y Kobayashi Y et al. Development of biodegradable polycation-based inhalable dry gene powders by spray freeze drying. Pharmaceutics7 (3), 233–254 (2015).
  • Debnath SK Saisivam S Omri A . Plga ethionamide nanoparticles for pulmonary delivery: development and in vivo evaluation of dry powder inhaler. J. Pharm. Biomed. Anal.145, 854–859 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.