225
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the Basis of Transcutaneous Vaccine Delivery

, , , , &
Pages 63-80 | Received 10 Aug 2018, Accepted 24 Oct 2018, Published online: 07 Dec 2018

References

  • Shenefelt PD . Herbal treatment for dermatologic disorders . Arch. Dermatol.138 ( 2 ), 232 – 242 ( 2002 ).
  • Streilein JW . Skin-associated lymphoid tissues (SALT): origins and functions . J. Invest. Dermatol.80 ( Suppl ), 12s – 16s ( 1983 ).
  • Global Commission for the Certification of Smallpox Eradication & World Health Organization . The global eradication of smallpox: final report of the Global Commission for the Certification of Smallpox Eradication , Geneva , December 1979 ( 1980 ). http://apps.who.int/iris/handle/10665/68258 .
  • Baxter AL Cohen LL Burton M Mohammed A Lawson ML . The number of injected same-day preschool vaccines relates to preadolescent needle fear and HPV uptake . Vaccine35 ( 33 ), 4213 – 4219 ( 2017 ).
  • Guo X Zhong J-Y Li J-W . Hepatitis C virus infection and vaccine development . J. Clin. Exp. Hepatol.8 ( 2 ), 195 – 204 ( 2018 ).
  • Tomljenovic L Shaw CA . Aluminum vaccine adjuvants: are they safe?Curr. Med. Chem.18 ( 17 ), 2630 – 2637 ( 2011 ).
  • van der Laan JW Gould S Tanir JY . Safety of vaccine adjuvants: focus on autoimmunity . Vaccine33 ( 13 ), 1507 – 1514 ( 2015 ).
  • Jung EC Maibach HI . Animal models for percutaneous absorption . J. Appl. Toxicol.35 ( 1 ), 1 – 10 ( 2015 ).
  • Lavker RM Sun TT . Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations . Science215 ( 4537 ), 1239 – 1241 ( 1982 ).
  • Menon GK . New insights into skin structure: scratching the surface . Adv. Drug Deliv. Rev.54 ( Suppl. ), S3 – S7 ( 2002 ).
  • Nemes Z Steinert PM . Bricks and mortar of the epidermal barrier . Exp. Mol. Med.31 ( 1 ), 5 – 19 ( 1999 ).
  • Kalinin AE Kajava AV Steinert PM . Epithelial barrier function: assembly and structural features of the cornified cell envelope . Bioessays24 ( 9 ), 789 – 800 ( 2002 ).
  • Pasparakis M Haase I Nestle FO . Mechanisms regulating skin immunity and inflammation . Nat. Rev. Immunol.14 ( 5 ), 289 – 301 ( 2014 ).
  • Tong PL Roediger B Kolesnikoff N et al. The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy . J. Invest. Dermatol.135 ( 1 ), 84 – 93 ( 2015 ).
  • Lambert PH Laurent PE . Intradermal vaccine delivery: will new delivery systems transform vaccine administration?Vaccine26 ( 26 ), 3197 – 3208 ( 2008 ).
  • Gniadecka M Jamec G . Quantitative evaluation of chronological aging and photoaging in vivo: studies on skin echogenicity and thickness . Br. J. Dermatol.139 , 815 – 821 ( 1998 ).
  • Waller JM Maibach HI . Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity . Ski. Res. Technol.11 ( 4 ), 221 – 235 ( 2005 ).
  • Shuster S Black MM McVitie E . The influence of age and sex on skin thickness, skin collagen and density . Br. J. Dermatol.93 ( 6 ), 639 – 643 ( 1975 ).
  • Sandby-M⊘ller J Poulsen T Wulf HC . Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits . Acta Derm. Venereol.83 ( 6 ), 410 – 413 ( 2003 ).
  • Laurent A Mistretta F Bottigioli D et al. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines . Vaccine25 ( 34 ), 6423 – 6430 ( 2007 ).
  • Groswasser J Kahn A Bouche B et al. Needle length and injection technique for efficient intramuscular vaccine delivery in infants and children evaluated through an ultrasonographic determination of subcutaneous and muscle layer thickness . Pediatrics100 ( 3 Pt 1 ), 400 – 403 ( 1997 ).
  • Marples M . In : Chapter 1 . The Ecology of the Human Skin . ThomasCC ( Ed. ). Bannerstone House , IL, USA ( 1965 ).
  • Kearney JN Harnby D Gowland G Holland KT . The follicular distribution and abundance of resident bacteria on human skin . J. Gen. Microbiol.130 ( 4 ), 797 – 801 ( 1984 ).
  • Gallo RL Hooper LV . Epithelial antimicrobial defence of the skin and intestine . Nat. Rev. Immunol.12 ( 7 ), 503 – 516 ( 2012 ).
  • Christensen GJM Scholz CFP Enghild J et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis . BMC Genomics17 ( 1 ), 1 – 14 ( 2016 ).
  • Nakatsuji T Chen TH Narala S et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis . Sci. Transl. Med.9 ( 378 ), eaah4680 ( 2017 ).
  • Chehoud C Rafail S Tyldsley AS Seykora JT Lambris JD Grice EA . Complement modulates the cutaneous microbiome and inflammatory milieu . Proc. Natl Acad. Sci. USA110 ( 37 ), 15061 – 15066 ( 2013 ).
  • Naik S Bouladoux N Wilhelm C et al. Compartmentalized control of skin immunity by resident commensals . Science337 ( 6098 ), 1115 – 1119 ( 2012 ).
  • Naik S Bouladoux N Linehan JL et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature . Nature520 ( 7545 ), 104 – 108 ( 2015 ).
  • Brandtzaeg P . Mucosal immunity: induction, dissemination, and effector functions . Scand. J. Immunol.70 ( 6 ), 505 – 515 ( 2009 ).
  • Salinas I . The mucosal immune system of teleost fish . Biology (Basel).4 , 525 – 539 ( 2015 ).
  • Chen YE Fischbach MA Belkaid Y . Skin microbiota–host interactions . Nature553 ( 7689 ), 427 – 436 ( 2018 ).
  • Thaiss CA Levy M Itav S Elinav E . Integration of innate immune signaling . Trends Immunol.37 ( 2 ), 84 – 101 ( 2016 ).
  • Belyakov IM Hammond SA Ahlers JD Glenn GM Berzofsky JA . Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells . J. Clin. Invest.113 ( 7 ), 998 – 1007 ( 2004 ).
  • Glenn GM Kenney RT Ellingsworth LR Frech SA Hammond SA Zoeteweij JP . Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin . Expert Rev. Vaccines2 ( 2 ), 253 – 267 ( 2003 ).
  • Nestle FO Di Meglio P Qin JZ Nickoloff BJ . Skin immune sentinels in health and disease . Nat. Rev. Immunol.9 ( 10 ), 679 – 691 ( 2009 ).
  • Miller LS Modlin RL . Human keratinocyte toll-like receptors promote distinct immune responses . J. Invest. Dermatol.127 ( 2 ), 262 – 263 ( 2007 ).
  • Lebre MC Van Der Aar AMG Van Baarsen L et al. Human keratinocytes express functional toll-like receptor 3, 4, 5, and 9 . J. Invest. Dermatol.127 ( 2 ), 331 – 341 ( 2007 ).
  • Black APB Ardern-Jones MR Kasprowicz V et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells . Eur. J. Immunol.37 ( 6 ), 1485 – 1493 ( 2007 ).
  • Brodell LA Ã B Rosenthal KS . Skin structure and function the body's primary defense against infection . Infect. Dis. Clin. Pract.16 ( 2 ), 113 – 117 ( 2008 ).
  • Kobayashi M Yoshiki R Sakabe J Kabashima K Nakamura M Tokura Y . Expression of toll-like receptor 2, NOD2 and dectin-1 and stimulatory effects of their ligands and histamine in normal human keratinocytes . Br. J. Dermatol.160 ( 2 ), 297 – 304 ( 2009 ).
  • Partidos CD Beignon AS Semetey V Briand JP Muller S . The bare skin and the nose as non-invasive routes for administering peptide vaccines . Vaccine19 ( 17–19 ), 2708 – 2715 ( 2001 ).
  • Kubo A Nagao K Yokouchi M Sasaki H Amagai M . External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers . J. Exp. Med.206 ( 13 ), 2937 – 2946 ( 2009 ).
  • Merad M Ginhoux F Collin M . Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells . Nat. Rev. Immunol.8 ( 12 ), 935 – 947 ( 2008 ).
  • Malissen B Tamoutounour S Henri S . The origins and functions of dendritic cells and macrophages in the skin . Nat. Rev. Immunol.14 ( 6 ), 417 – 428 ( 2014 ).
  • Kerstan A Bröcker EB Trautmann A . Decisive role of tumor necrosis factor-α for spongiosis formation in acute eczematous dermatitis . Arch. Dermatol. Res.303 ( 9 ), 651 – 658 ( 2011 ).
  • Ebner S Nguyen VA Forstner M et al. Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells . J. Allergy Clin. Immunol.119 ( 4 ), 982 – 990 ( 2007 ).
  • Gasque P Jaffar-Bandjee MC . The immunology and inflammatory responses of human melanocytes in infectious diseases . J. Infect.71 ( 4 ), 413 – 421 ( 2015 ).
  • Merad M Sathe P Helft J Miller J Mortha A . The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting . Annu. Rev. Immunol.31 , 563 – 604 ( 2013 ).
  • Gorvel L Korenfeld D Tung T Klechevsky E . Dendritic cell-derived IL-32α: a novel inhibitory cytokine of NK cell function . J. Immunol.199 ( 4 ), 1290 – 1300 ( 2017 ).
  • Lalor SJ McLoughlin RM . Memory γδ T Cells – newly appreciated protagonists in infection and immunity . Trends Immunol.37 ( 10 ), 690 – 702 ( 2016 ).
  • Gordon S . Alternative activation of macrophages . Nat. Rev. Immunol.3 ( 1 ), 23 – 25 ( 2003 ).
  • Sica AM . Macrophage plasticity and polarization . J. Clin. Invest.122 ( 3 ), 787 – 795 ( 2012 ).
  • Heib V Becker M Taube C Stassen M . Advances in the understanding of mast cell function . Br. J. Haematol.142 ( 5 ), 683 – 694 ( 2008 ).
  • Grimbaldeston MA Nakae S Kalesnikoff J Tsai M Galli SJ . Mast cell-derived IL-10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B . Nat. Immunol.8 ( 10 ), 1095 – 104 ( 2007 ).
  • Clark RA . Skin-resident T cells: the ups and downs of on site immunity . J. Invest. Dermatol.130 ( 2 ), 362 – 370 ( 2010 ).
  • Holtmeier W Kabelitz D . gammadelta T cells link innate and adaptive immune responses . Chem. Immunol. Allergy86 , 151 – 183 ( 2005 ).
  • O'Brien RL Born WK . Dermal γδ T cells - what have we learned?Cell. Immunol.296 ( 1 ), 62 – 69 ( 2015 ).
  • Mehling A Loser K Varga G et al. Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity . J. Exp. Med.194 ( 5 ), 615 – 628 ( 2001 ).
  • Chen D Maa YF Haynes JR . Needle-free epidermal powder immunization . Expert Rev. Vaccin.1 ( 3 ), 265 – 276 ( 2002 ).
  • Logomasini MA Stout RR . Jet injection devices for the needle-free administration of compounds, vaccines, and other agents . Int. J. Pharm. Compd.17 ( 4 ), 270 – 280 ( 2013 ).
  • Chen X Kositratna G Zhou C Manstein D Wu MX . Micro-fractional epidermal powder delivery for improved skin vaccination . J. Control. Rel.192 , 310 – 316 ( 2014 ).
  • Baxter J Mitragotri S . Needle-free liquid jet injections: mechanisms and applications . Expert Rev. Med. Devices3 ( 5 ), 565 – 574 ( 2006 ).
  • Frerichs DM Ellingsworth LR Frech SA et al. Controlled, single-step, stratum corneum disruption as a pretreatment for immunization via a patch . Vaccine26 ( 22 ), 2782 – 2787 ( 2008 ).
  • Seid RC Look JL Ruiz C et al. Transcutaneous immunization with Intercell's vaccine delivery system . Vaccine30 ( 29 ), 4349 – 4354 ( 2012 ).
  • Glenn GM Villar CP Flyer DC et al. Safety and immunogenicity of an enterotoxigenic Escherichia coli vaccine patch containing heat-labile toxin: use of skin pretreatment to disrupt the stratum corneum . Infect. Immun.75 ( 5 ), 2163 – 2170 ( 2007 ).
  • Gill HS Andrews SN Sakthivel SK et al. Selective removal of stratum corneum by microdermabrasion to increase skin permeability . Eur. J. Pharm. Sci.38 ( 2 ), 95 – 103 ( 2009 ).
  • Apitz I Vogel A . Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin . Appl. Phys. A Mater. Sci. Process.81 ( 2 ), 329 – 338 ( 2005 ).
  • Bramson J Dayball K Evelegh C Wan YH Page D Smith A . Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines . Gene Ther.10 ( 3 ), 251 – 260 ( 2003 ).
  • Arora A Prausnitz MR Mitragotri S . Micro-scale devices for transdermal drug delivery . Int. J. Pharm.364 ( 2 ), 227 – 236 ( 2008 ).
  • Tezel A Paliwal S Shen Z Mitragotri S . Low-frequency ultrasound as a transcutaneous immunization adjuvant . Vaccine23 ( 29 ), 3800 – 3807 ( 2005 ).
  • Dahlan A Alpar HO Stickings P Sesardic D Murdan S . Transcutaneous immunisation assisted by low-frequency ultrasound . Int. J. Pharm.368 ( 1–2 ), 123 – 128 ( 2009 ).
  • Foldvari M Babiuk S Badea I . DNA delivery for vaccination and therapeutics through the skin . Curr. Drug Deliv.3 ( 1 ), 17 – 28 ( 2006 ).
  • Broderick KE Khan AS Sardesai NY . DNA vaccination in skin enhanced by electroporation . Methods Mol. Biol.1143 , 123 – 130 ( 2014 ).
  • Todorova B Adam L Culina S et al. Electroporation as a vaccine delivery system and a natural adjuvant to intradermal administration of plasmid DNA in macaques . Sci. Rep.7 ( 1 ), 4122 ( 2017 ).
  • Storni T Kündig TM Senti G Johansen P . Immunity in response to particulate antigen-delivery systems . Adv. Drug Deliv. Rev.57 ( 3 ), 333 – 355 ( 2005 ).
  • Trovato M De Berardinis P . Novel antigen delivery systems . World J. Virol.4 ( 3 ), 156 – 168 ( 2015 ).
  • Mishra D Dubey V Asthana A Saraf DK Jain NK . Elastic liposomes mediated transcutaneous immunization against Hepatitis B . Vaccine24 ( 22 ), 4847 – 4855 ( 2006 ).
  • Mahor S Rawat A Dubey PK et al. Cationic transfersomes based topical genetic vaccine against hepatitis B . Int. J. Pharm.340 ( 1–2 ), 13 – 19 ( 2007 ).
  • Mishra V Mahor S Rawat A et al. Development of novel fusogenic vesosomes for transcutaneous immunization . Vaccine24 ( 27–28 ), 5559 – 5570 ( 2006 ).
  • Vyas SP Singh RP Jain S et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B . Int. J. Pharm.296 ( 1–2 ), 80 – 86 ( 2005 ).
  • Tamayo I Gamazo C de Souza Rebouças J Irache JM . Topical immunization using a nanoemulsion containing bacterial membrane antigens . J. Drug Deliv. Sci. Technol.42 , 207 – 214 ( 2017 ).
  • Karande P Mitragotri S . Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies . Annu. Rev. Chem. Biomol. Eng.1 , 175 – 201 ( 2010 ).
  • Cevc G . Transferosomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery . Crit. Rev. Ther. Drug Carr. Syst.13 ( 3–4 ), 257 – 388 ( 1996 ).
  • Chen J Lu W-L Gu W Lu S-S Chen Z-P Cai B-C . Skin permeation behavior of elastic liposomes: role of formulation ingredients . Expert Opin. Drug Deliv.10 ( 6 ), 845 – 856 ( 2013 ).
  • Benson HAE . Elastic liposomes for topical and transdermal drug delivery . Methods Mol. Biol.605 , 77 – 86 ( 2010 ).
  • Duangjit S Opanasopit P Rojanarata T Ngawhirunpat T . Effect of edge activator on characteristic and in vitro skin permeation of meloxicam loaded in elastic liposomes . Adv. Mater. Res. Vols.194–196 , 537 – 540 ( 2011 ).
  • Garg V Singh H Bimbrawh S et al. Ethosomes and transfersomes: principles, perspectives and practices . Curr. Drug Deliv.14 ( 5 ), 613 – 633 ( 2016 ).
  • Prausnitz MR . Microneedles for transdermal drug delivery . Adv. Drug Deliv. Rev.56 ( 5 ), 581 – 587 ( 2004 ).
  • Donnelly RF Singh TRR Morrow DIJ Woolfson AD . Microneedle-Mediated Transdermal and Intradermal Drug Delivery . Hoboken, Wiley–Blackwell , Oxford, UK ( 2012 ).
  • Larrañeta E Lutton REM Woolfson AD Donnelly RF . Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development . Mater. Sci. Eng. R Reports.104 , 1 – 32 ( 2016 ).
  • Lutton REM Moore J Larrañeta E Ligett S Woolfson AD Donnelly RF . Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation . Drug Deliv. Transl. Res.5 ( 4 ), 313 – 331 ( 2015 ).
  • Tuan-Mahmood TM McCrudden MTC Torrisi BM et al. Microneedles for intradermal and transdermal drug delivery . Eur. J. Pharm. Sci.50 ( 5 ), 623 – 637 ( 2013 ).
  • Indermun S Luttge R Choonara YE et al. Current advances in the fabrication of microneedles for transdermal delivery . J. Control. Rel.185 , 130 – 138 ( 2014 ).
  • Ripolin A Quinn J Larrañeta E Vicente-Perez EM Barry J Donnelly RF . Successful application of large microneedle patches by human volunteers . Int. J. Pharm.521 ( 1–2 ), 92 – 101 ( 2017 ).
  • Lutton REM Larrañeta E Kearney MC Boyd P Woolfson AD Donnelly RF . A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays . Int. J. Pharm.494 ( 1 ), 417 – 429 ( 2015 ).
  • Kommareddy S Baudner BC Oh S Kwon SY Singh M O'Hagan DT . Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens . J. Pharm. Sci.101 ( 3 ), 1021 – 1027 ( 2012 ).
  • Raphael AP Prow TW Crichton ML Chen X Fernando GJP Kendall MAF . Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays . Small6 ( 16 ), 1785 – 1793 ( 2010 ).
  • Sullivan SP Koutsonanos DG Del Pilar Martin M et al. Dissolving polymer microneedle patches for influenza vaccination . Nat. Med.16 ( 8 ), 915 – 920 ( 2010 ).
  • Rouphael NG Paine M Mosley R et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, Phase I trial . Lancet390 ( 10095 ), 649 – 658 ( 2017 ).
  • Matsuo K Hirobe S Yokota Y et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza . J. Control. Rel.160 ( 3 ), 495 – 501 ( 2012 ).
  • Matsuo K Okamoto H Kawai Y et al. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer's disease . J. Neuroimmunol.266 ( 1–2 ), 1 – 11 ( 2014 ).
  • Kommareddy S Baudner BC Bonificio A et al. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs . Vaccine31 ( 34 ), 3435 – 3441 ( 2013 ).
  • Zhu Q Zarnitsyn VG Ye L et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge . Proc. Natl Acad. Sci. USA106 ( 19 ), 7968 – 7973 ( 2009 ).
  • Wang BZ Gill HS He C et al. Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cross-protective influenza immunity . J. Control. Rel.178 , 1 – 7 ( 2014 ).
  • Edens C Collins ML Ayers J Rota PA Prausnitz MR . Measles vaccination using a microneedle patch . Vaccine31 ( 34 ), 3403 – 3409 ( 2013 ).
  • Vrdoljak A McGrath MG Carey JB et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines . J. Control. Rel.159 ( 1 ), 34 – 42 ( 2012 ).
  • Kim NW Lee MS Kim KR et al. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine . J. Control. Rel.179 , 11 – 17 ( 2014 ).
  • Donnelly RF Larrañeta E . Microarray patches: potentially useful delivery systems for long-acting nanosuspensions . Drug Discov. Today23 ( 5 ), 1026 – 1033 ( 2018 ).
  • Demuth PC Moon JJ Suh H Hammond PT Irvine DJ . Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery . ACS Nano.6 ( 9 ), 8041 – 8051 ( 2012 ).
  • Burton SA Ng CY Simmers R et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array . Pharm. Res.28 ( 1 ), 31 – 40 ( 2011 ).
  • Laurent PE Bonnet S Alchas P et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system . Vaccine25 ( 52 ), 8833 – 8842 ( 2007 ).
  • Mikszta JA Dekker JP Harvey NG et al. Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine . Infect. Immun.74 ( 12 ), 6806 – 6810 ( 2006 ).
  • Laurent PE Bourhy H Fantino M Alchas P Mikszta JA . Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults . Vaccine28 ( 36 ), 5850 – 5856 ( 2010 ).
  • Morefield GL Tammariello RF Purcell BK et al. An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock . J. Immune Based Ther. Vaccines6 , 5 ( 2008 ).
  • Larrañeta E McCrudden MTC Courtenay AJ Donnelly RF . Microneedles: a new frontier in nanomedicine delivery . Pharm. Res.33 ( 5 ), 1055 – 1073 ( 2016 ).
  • Zaric M Lyubomska O Touzelet O et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, l-Lactide-Co-Glycolide nanoparticles induces efficient antitumor and antiviral immune responses . ACS Nano.7 ( 3 ), 2042 – 2055 ( 2013 ).
  • Zaric M Lyubomska O Poux C et al. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and th1 immune responses by murine langerhans cells . J. Invest. Dermatol.135 ( 2 ), 425 – 434 ( 2015 ).
  • Zhang Y Ng Weibeng Feng X Cao F Xu Huaxi . Lipid vesicular nanocarrier: quick encapsulation efficiency determination and transcutaneous application . Int. J. Pharm.516 ( 1–2 ), 225 – 230 ( 2017 ).
  • Bussio JI Molina-Perea C González-Aramundiz JV . Lower-size chitosan nanocapsules for transcutaneous antigen delivery . Nanomaterials (Basel).8 ( 9 ), doi: 10.3390/nano8090659 ( 2018 ) ( Epub ahead of print ).
  • Bernardi DS Bitencourt C da Silveira DS et al. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles . Nanomedicine12 ( 8 ), 2439 – 2448 ( 2016 ).
  • Leone M Mönkäre J Bouwstra JA Kersten G . Dissolving microneedle patches for dermal vaccination . Pharm. Res.34 ( 11 ), 2223 – 2240 ( 2017 ).
  • Warrell MJ . Current rabies vaccines and prophylaxis schedules: preventing rabies before and after exposure . Travel Med. Infect. Dis.10 ( 1 ), 1 – 15 ( 2012 ).
  • Millar JD Roberto RR Wulff H Wenner HA Henderson DA . Smallpox vaccination by intradermal jet injection. I. Introduction, background and results of pilot studies . Bull. World Health Organ.41 ( 6 ), 749 – 760 ( 1969 ).
  • Mohammed AJ AlAwaidy S Bawikar S et al. Fractional doses of inactivated poliovirus vaccine in Oman . N. Engl. J. Med.362 ( 25 ), 2351 – 2359 ( 2010 ).
  • Resik S Tejeda A Lago PM et al. Randomized controlled clinical trial of fractional doses of inactivated poliovirus vaccine administered intradermally by needle-free device in Cuba . J. Infect. Dis.201 ( 9 ), 1344 – 1352 ( 2010 ).
  • Resik S Tejeda A Mach O et al. Needle-free jet injector intradermal delivery of fractional dose inactivated poliovirus vaccine: association between injection quality and immunogenicity . Vaccine33 ( 43 ), 5873 – 5877 ( 2015 ).
  • Dean HJ Chen D . Epidermal powder immunization against influenza . Vaccine23 ( 5 ), 681 – 686 ( 2004 ).
  • Jones S Evans K McElwaine-Johnn H et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled Phase Ib clinical trial . Vaccine27 ( 18 ), 2506 – 2512 ( 2009 ).
  • Frech SA DuPont HL Bourgeois AL et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a Phase II, randomised, double-blind, placebo-controlled field trial . Lancet371 ( 9629 ), 2019 – 2025 ( 2008 ).
  • Behrens RH Cramer JP Jelinek T et al. Efficacy and safety of a patch vaccine containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a Phase III, randomised, double-blind, placebo-controlled field trial in travellers from Europe to Mexico and Guatemala . Lancet Infect. Dis.14 ( 3 ), 197 – 204 ( 2014 ).
  • Kwon KM Lim S-M Choi S et al. Microneedles: quick and easy delivery methods of vaccines . Clin. Exp. Vaccine Res.6 ( 2 ), 156 – 159 ( 2017 ).
  • Leroux-Roels I Weber F . Intanza® 9 μg intradermal seasonal influenza vaccine for adults 18 to 59 years of age . Hum. Vaccin. Immunother.9 ( 1 ), 115 – 121 ( 2013 ).
  • Arnou R Icardi G De Decker M et al. Intradermal influenza vaccine for older adults: a randomized controlled multicenter Phase III study . Vaccine27 ( 52 ), 7304 – 7312 ( 2009 ).
  • Troy SB Kouiavskaia D Siik J et al. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-infected adults . J. Infect. Dis.211 ( 12 ), 1969 – 1976 ( 2015 ).
  • Anand A Zaman K Estívariz CF et al. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: a randomized controlled trial . Vaccine33 ( 48 ), 6816 – 6822 ( 2015 ).
  • Vescovo P Rettby N Ramaniraka N et al. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™ . Vaccine35 ( 14 ), 1782 – 1788 ( 2017 ).
  • Laurent PE Bourhy H Fantino M Alchas P Mikszta JA . Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults . Vaccine28 ( 36 ), 5850 – 5856 ( 2010 ).
  • Rouphael NG Paine M Mosley R et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, Phase I trial . Lancet390 ( 10095 ), 649 – 658 ( 2017 ).
  • Hirobe S Azukizawa H Hanafusa T et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch . Biomaterials57 , 50 – 58 ( 2015 ).
  • Marshall S Sahm LJ Moore AC . The success of microneedle-mediated vaccine delivery into skin . Hum. Vaccin. Immunother.12 ( 11 ), 2975 – 2983 ( 2016 ).
  • Haidari G Cope A Miller A et al. Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial . Sci. Rep.7 ( 1 ), 1 – 11 ( 2017 ).
  • Kim H Theogarajan LS Pennathur S . A repeatable and scalable fabrication method for sharp, hollow silicon microneedles . J. Micromech. Microeng.28 , 035007 ( 2018 ).
  • McCrudden MTC Alkilani AZ Courtenay AJ et al. Considerations in the sterile manufacture of polymeric microneedle arrays . Drug Deliv. Transl. Res.5 ( 1 ), 3 – 14 ( 2014 ).
  • Donnelly RF Singh TRR Tunney MM et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro . Pharm. Res.26 ( 11 ), 2513 – 2522 ( 2009 ).
  • Donnelly RF Majithiya R Singh TRR et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding techniques . Pharm. Res.28 , 41 – 57 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.