344
Views
0
CrossRef citations to date
0
Altmetric
Review

Skin Toxicity of Topically Applied Nanoparticles

, , , &
Pages 383-396 | Received 19 Sep 2018, Accepted 21 May 2019, Published online: 11 Jun 2019

References

  • Omenn GS . Toxicogenomics: Principles and Applications. HamadehHK, AfshariCA ( Eds). National Institute of Environmental Health Science, Wiley-Liss, NJ, USA (2004).
  • Wallace H , RobertsR , CorsiniEet al. Toxicology as an academic discipline in European universities. Toxicol. Lett.254, 63 (2016).
  • Woolley D , WoolleyA. A Guide to Practical Toxicology: Evaluation, Prediction, and Risk. CRC Press, London, UK (2008).
  • Chandra SA , StokesAH , HaileyRet al. Dermal toxicity studies: factors impacting study interpretation and outcome. Toxicol. Pathol.43(4), 474–481 (2015).
  • OECD . OECD Guidelines for the Testing of Chemicals. Organization for Economic Cooperation and Develoment, Paris, France (1994).
  • Abo-Elfadl MT , Gamal-EldeenAM , ElshafeyMMet al. Photothermal therapeutic effect of PEGylated gold nano-semicubes in chemically-induced skin cancer in mice. J. Photochem. Photobiol. B.164, 21–29 (2016).
  • Bruinen de Bruin Y , EskesC , LangezaalI , CoeckeS , Kinsner-OvaskainenA , HakkinenPJ. Testing methods and toxicity assessment (including alternatives). In:Information Resources in Toxicology. Elsevier,497–513 (2009).
  • Stephens ML , MakNS. History of the 3Rs in toxicity testing: from Russell and burch to 21st century toxicology. In:Issues in Toxicology. Allen D, Walters M (Eds).Cambridge, UK,1–43 (2014).
  • Diembeck W , EskesC , HeylingsJRet al. Skin absorption and penetration. Altern. Lab. Anim.33(Suppl. 1), 105–107 (2005).
  • Berkó S , BalázsB , SütőBet al. Monitoring of skin penetration and absorption with a new in vivo experimental model. Farmacia62(6), 1157–1163 (2014).
  • Ng SF , RouseJJ , SandersonFD , MeidanV , EcclestonGM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech.11(3), 1432–1441 (2010).
  • Matsuo K , MoriO , HashimotoT. Plucking during telogen induces apoptosis in the lower part of hair follicles. Arch. Dermatol. Res.295(1), 33–37 (2003).
  • Foley PL , HendersonAL , BissonetteEA , WimerGR , FeldmanSH. Evaluation of fentanyl transdermal patches in rabbits: blood concentrations and physiologic response. Comp. Med.51(3), 239–244 (2001).
  • Maynard AD . Nanotechnology: a research strategy for addressing risks. Woodrow Wilson International Center for Scholars: Project on emerging nanotechnologies. 2006. [Cited on Nov 10, 2008]. Nordon, President, Lux Research, Inc. (2006). http://www.nanotechproject.org/file download/files/PEN3 Risk.pdf
  • Rastogi ID . Nanotechnology: safety paradigms. J. Toxicol. Environ. Health Sci.4(1), 1–12 (2012).
  • Linkov I , SatterstromFK , CoreyLM. Nanotoxicology and nanomedicine: making hard decisions. Nanomed. Nanotechnol. Biol. Med.4(2), 167–171 (2008).
  • Donaldson K , StoneV , TranCL , KreylingW , BormPJ. Nanotoxicology. Occup. Environ. Med.61(9), 727–728 (2004).
  • Nel A , XiaT , MadlerL , LiN. Toxic potential of materials at the nanolevel. Science311(5761), 622–627 (2006).
  • Buzea C , PachecoII , RobbieK. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2(4), Mr17-71 (2007).
  • Wang LP , WangJY. Skin penetration of inorganic and metallic nanoparticles. J. Shanghai Jiaotong University (Sci.)19(6), 691–697 (2014).
  • Schäfer T , HuberF , SeherHet al. Nanoparticles and their influence on radionuclide mobility in deep geological formations. Appl. Geochem.27(2), 390–403 (2012).
  • Oberdorster G , MaynardA , DonaldsonKet al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol.2(8), 1–35 (2005).
  • Hoet PH , Bruske-HohlfeldI , SalataOV. Nanoparticles – known and unknown health risks. J. Nanobiotechnology2(1), 12 (2004).
  • Yildirimer L , ThanhNTK , LoizidouM , SeifalianAM. Toxicological considerations of clinically applicable nanoparticles. Nano Today6(6), 585–607 (2011).
  • Brown DM , WilsonMR , MacNeeW , StoneV , DonaldsonK. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol.175(3), 191–199 (2001).
  • Donaldson K , BrownD , ClouterAet al. The pulmonary toxicology of ultrafine particles. J. Aerosol Med.15(2), 213–220 (2002).
  • Tran CL , BuchananD , CullenRT , SearlA , JonesAD , DonaldsonK. Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. Inhal. Toxicol.12(12), 1113–1126 (2000).
  • Xiong S , TangY , NgHSet al. Specific surface area of titanium dioxide (TiO2) particles influences cyto- and photo-toxicity. Toxicology304, 132–140 (2013).
  • Jin B , BaoWJ , WuZQ , XiaXH. In situ monitoring of protein adsorption on a nanoparticulated gold film by attenuated total reflection surface-enhanced infrared absorption spectroscopy. Langmuir28(25), 9460–9465 (2012).
  • Barhoum A , LuisaGarcía-Betancourt M. Chapter 10 – Physicochemical characterization of nanomaterials: size, morphology, optical, magnetic, and electrical properties. In:Emerging Applications of Nanoparticles and Architecture Nanostructures.BarhoumA, MakhloufASH ( Eds). Elsevier, 279–304 (2018).
  • Hamadeh HK , AfshariCA. Toxicogenomics: Principles and ApplicationsJohn Wiley & Sons, NJ, USA (2004).
  • Greish K , ThiagarajanG , GhandehariH. In vivo methods of nanotoxicology. Nanotoxicity926, 235–253 (2012).
  • Oberdörster G , MaynardA , DonaldsonKet al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol.2(1), 8–43 (2005).
  • Powers KW , BrownSC , KrishnaVB , WasdoSC , MoudgilBM , RobertsSM. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci.90(2), 296–303 (2006).
  • Murdock RC , Braydich-StolleL , SchrandAM , SchlagerJJ , HussainSM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci.101(2), 239–253 (2008).
  • Council NR . Toxicity Testing in the 21st Century: a Vision and a StrategyNational Academies Press, Washington, DC, USA (2007).
  • Lademann J , RichterH , MeinkeM , SterryW , PatzeltA. Which skin model is the most appropriate for the investigation of topically applied substances into the hair follicles?Skin Pharmacol. Physiol.23(1), 47–52 (2010).
  • Monopoli MP , WalczykD , CampbellAet al. Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc.133(8), 2525–2534 (2011).
  • Dikalov SI , HarrisonDG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal.20(2), 372–382 (2014).
  • Damoiseaux R , GeorgeS , LiMet al. No time to lose – high throughput screening to assess nanomaterial safety. Nanoscale3(4), 1345–1360 (2011).
  • Murdock RC , Braydich-StolleL , SchrandAM , SchlagerJJ , HussainSM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci.101(2), 239–253 (2008).
  • Wu J , LiuW , XueCet al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Lett.191(1), 1–8 (2009).
  • Wang M , LaiX , ShaoL , LiL. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int. J. Nanomedicine13, 4445–4459 (2018).
  • Hudson SP , PaderaRF , LangerR , KohaneDS. The biocompatibility of mesoporous silicates. Biomaterials29(30), 4045–4055 (2008).
  • Leu D , MantheyB , KreuterJ , SpeiserP , DelucaPP. Distribution and elimination of coated polymethyl [2‐14C] methacrylate nanoparticles after intravenous injection in rats. J. Pharm. Sci.73(10), 1433–1437 (1984).
  • Scheuplein RJ . Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol.48(1), 79–88 (1967).
  • Witzmann FA , Monteiro-RiviereNA. Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine2(3), 158–168 (2006).
  • Nielsen JB , NielsenF , SorensenJA. Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin. Arch. Dermatol. Res.299(9), 423–431 (2007).
  • Zhao Y , NgKW. Nanotoxicology in the skin: how deep is the issue?Nano Life4(01), 1440004 (2014).
  • Silva SAME , Michniak-KohnB , LeonardiGR. An overview about oxidation in clinical practice of skin aging. Anais Brasileiros de Dermatologia92, 367–374 (2017).
  • Miquel-Jeanjean C , CrepelF , RaufastVet al. Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins. Photochem. Photobiol.88(6), 1513–1521 (2012).
  • Hamishehkar H , GhanbarzadehS , SepehranS , JavadzadehY , AdibZM , KouhsoltaniM. Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: potential tool for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm.42(6), 846–853 (2016).
  • Kim S , LimYT , SolteszEGet al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.22(1), 93–97 (2004).
  • Holsapple MP , FarlandWH , LandryTDet al. Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci.88(1), 12–17 (2005).
  • Smijs TG , BouwstraJA. Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact. J. Biomed. Nanotechnol.6(5), 469–484 (2010).
  • Leite-Silva VR , LeLamer M , SanchezWYet al. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur. J. Pharm. Biopharm.84(2), 297–308 (2013).
  • Baroli B , EnnasMG , LoffredoF , IsolaM , PinnaR , Lopez-QuintelaMA. Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol.127(7), 1701–1712 (2007).
  • Wu J , LiuW , XueCet al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Lett.191(1), 1–8 (2009).
  • Samberg ME , OldenburgSJ , Monteiro-RiviereNA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect.118(3), 407–413 (2010).
  • Schek RM , HollisterSJ , KrebsbachPH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol. Ther.9(1), 130–138 (2004).
  • Rühle M , DoschH , MittemeijerE , Vande Voorde M. European white book on fundamental research in materials science. Max-Planck-Institut fur Metallforschung, Stuttgart, Germany, (2001).
  • Zhang LW , YuWW , ColvinVL , Monteiro-RiviereNA. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol. Appl. Pharmacol.228(2), 200–211 (2008).
  • Alvarez-Roman R , NaikA , KaliaYN , GuyRH , FessiH. Skin penetration and distribution of polymeric nanoparticles. J. Control. Rel.99(1), 53–62 (2004).
  • Labouta HI , LiuDC , LinLLet al. Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res.28(11), 2931–2944 (2011).
  • Gamer AO , LeiboldE , van RavenzwaayB. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol. In Vitro20(3), 301–307 (2006).
  • Leite-Silva VR , SanchezWY , StudierHet al. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment. Eur. J. Pharmaceutics Biopharm.104, 140–147 (2016).
  • Tak YK , PalS , NaogharePK , RangasamyS , SongJM. Shape-dependent skin penetration of silver nanoparticles: does it really matter?Sci. Rep.5, 16908 (2015).
  • Barillet S , Simon-DeckersA , Herlin-BoimeNet al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanopart. Res.12(1), 61–73 (2010).
  • Filipe P , SilvaJN , SilvaR et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol.22(5), 266–275 (2009).
  • Gulson B , McCallM , KorschMet al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol. Sci.118(1), 140–149 (2010).
  • Zhu Y , ChoeC-S , AhlbergSet al. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Optics20(5), 051006 (2014).
  • Larese Filon F , CroseraM , TimeusEet al. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol. In Vitro27(1), 121–127 (2013).
  • Lee O , JeongSH , ShinWU , LeeG , OhC , SonSW. Influence of surface charge of gold nanorods on skin penetration. Skin Res. Technol.19(1), e390–396 (2013).
  • Goldstein A , SorokaY , Frusic-ZlotkinM , PopovI , KohenR. High resolution SEM imaging of gold nanoparticles in cells and tissues. J. Microsc.256(3), 237–247 (2014).
  • Mardhiah Adib Z , GhanbarzadehS , KouhsoltaniM , YariKhosroshahi A , HamishehkarH. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Adv. Pharm. Bull.6(1), 31–36 (2016).
  • Raju G , KatiyarN , VadukumpullyS , ShankarappaSA. Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J. Dermatol. Sci.89(2), 146–154 (2018).
  • Tak YK , PalS , NaogharePK , RangasamyS , SongJM. Shape-dependent skin penetration of silver nanoparticles: does it really matter?Sci. Rep.5, 16908 (2015).
  • Babaie S , GhanbarzadehS , DavaranS , KouhsoltaniM , HamishehkarH. Nanoethosomes for dermal delivery of lidocaine. Adv. Pharm. Bull.5(4), 549 (2015).
  • Labouta HI , El-KhordaguiLK , KrausT , SchneiderM. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale3(12), 4989–4999 (2011).
  • Raju G , KatiyarN , VadukumpullyS , ShankarappaSA. Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J. Dermatol. Sci.89(2), 146–154 (2018).
  • Barillet S , Simon-DeckersA , HerlinBoime Net al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanoparticle Res.12(1), 61–73 (2010).
  • Horie M , KatoH , EndohSet al. Cellular effects of industrial metal nanoparticles and hydrophilic carbon black dispersion. J. Toxicol. Sci.39(6), 897–907 (2014).
  • Elsabahy M , WooleyKL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev.42(12), 5552–5576 (2013).
  • Zolnik BS , SadriehN , Gonzaález-FernaándezAf , DobrovolskaiaMA. Minireview: nanoparticles and the immune system. Endocrinology151(2), 458–465 (2010).
  • von Montfort C , AliliL , Teuber-HanselmannS , BrenneisenP. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol.4, 1–5 (2015).
  • Plytycz B , SeljelidR. From inflammation to sickness: historical perspective. Archivum Immunologiae et Therapiae Experimentalis51(2), 105–109 (2003).
  • Hvid M , JohansenC , DeleuranB , KempK , DeleuranM , VestergaardC. Regulation of caspase 14 expression in keratinocytes by inflammatory cytokines – a possible link between reduced skin barrier function and inflammation?Exp. Dermatol.20(8), 633–636 (2011).
  • Korani M , RezayatSM , GilaniK , ArbabiBidgoli S , AdeliS. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int. J. Nanomedicine6, 855–862 (2011).
  • Earlam R , Cunha‐MeloJ. Oesophageal squamous cell carcinoma: I. A critical review of surgery. Br. J. Surg.67(6), 381–390 (1980).
  • Rzigalinski BA , MeehanK , DavisRM , XuY , MilesWC , CohenCA. Radical nanomedicine. Nanomedicine (Lond.)1(4), 399–412 (2006).
  • Markovic Z , TrajkovicV. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials29(26), 3561–3573 (2008).
  • Shadyro OI , YurkovaIL , KiselMA. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int. J. Radiat. Biol.78(3), 211–217 (2002).
  • Leaper DJ . Silver dressings: their role in wound management. Int. Wound J.3(4), 282–294 (2006).
  • Sharma V , ShuklaRK , SaxenaN , ParmarD , DasM , DhawanA. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett.185(3), 211–218 (2009).
  • Sayes CM , FortnerJD , GuoWet al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett.4(10), 1881–1887 (2004).
  • Donaldson K , PolandCA , SchinsRP. Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology4(4), 414–420 (2010).
  • Connor EE , MwamukaJ , GoleA , MurphyCJ , WyattMD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1(3), 325–327 (2005).
  • Huk A , Izak-NauE , ElYamani Net al. Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating. Part Fibre Toxicol.12(25), 1–20 (2015).
  • Seabra AB , DuránN. Nanotoxicology of metal oxide nanoparticles. Metals5(2), 934–975 (2015).
  • Shvedova AA , CastranovaV , KisinERet al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A66(20), 1909–1926 (2003).
  • Ding L , StilwellJ , ZhangTet al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett.5(12), 2448–2464 (2005).
  • Monteiro-Riviere NA , NemanichRJ , InmanAO , WangYY , RiviereJE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett.155(3), 377–384 (2005).
  • Sayes CM , LiangF , HudsonJLet al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett.161(2), 135–142 (2006).
  • Sharma V , ShuklaRK , SaxenaN , ParmarD , DasM , DhawanA. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett.185(3), 211–218 (2009).
  • Lee SH , LeeHR , KimY-R , KimM-K. Toxic response of zinc oxide nanoparticles in human epidermal keratinocyte HaCaT cells. Toxicol. Environ. Health Sci.4(1), 14–18 (2012).
  • Lee SH , PieJ-E , KimY-R , LeeHR , SonSW , KimM-K. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol. Cell. Toxicol.8(2), 113–118 (2012).
  • Miller G . Cosmetics, nanotoxicity and skin penetration – a brief summary of the toxicological and skin penetration literature. Friends Earth1–8 (2006).
  • Auffan M , RoseJ , OrsiereTet al. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology3(2), 161–171 (2009).
  • Benameur L , AuffanM , CassienMet al. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology9(6), 696–705 (2015).
  • Ahani E , MontazerM , ToliyatT , MahmoudiRad M , HarifiT. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J. Microencapsul.34(2), 121–131 (2017).
  • Park YH , JeongSH , YiSMet al. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicology In Vitro25(8), 1863–1869 (2011).
  • Lee S , YunHS , KimSH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials32(35), 9434–9443 (2011).
  • Keck CM , SchwabeK. Silver-nanolipid complex for application to atopic dermatitis skin: rheological characterization, in vivo efficiency and theory of action. J. Biomed. Nanotechnology5(4), 428–436 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.