1,204
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomedicines for Cancer Therapy: Current status, Challenges and Future Prospects

, &
Pages 113-132 | Received 30 Sep 2018, Accepted 27 Nov 2018, Published online: 25 Jan 2019

References

  • WHO Cancer . www.who.int/cancer/en/ .
  • Bhatt AP Redinbo MR Bultman SJ . The role of the microbiome in cancer development and therapy . CA Cancer J. Clin.67 ( 4 ), 326 – 344 ( 2017 ).
  • Siegel Rebecca L Miller Kimberly D Jemal A . Cancer statistics, 2018 . CA Cancer J. Clin.68 ( 1 ), 7 – 30 ( 2018 ).
  • Pitot H . Fundamentals of Oncology . Marcel Dekker , NY, USA ( 1978 ).
  • Ferlay J Soerjomataram I Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 . Int. J. Cancer136 ( 5 ), E359 – E386 ( 2015 ).
  • World Cancer Research Fund International . Worldwide cancer data . www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data .
  • Arruebo M Vilaboa N Sáez-Gutierrez B et al. Assessment of the evolution of cancer treatment therapies . Cancers3 ( 3 ), 3279 – 3330 ( 2011 ).
  • Kaliberov SA Buchsbaum DJ . Cancer treatment with gene therapy and radiation therapy . Adv. Cancer Res.15 , 221 – 263 ( 2012 ).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting . Adv. Enzyme Regul.41 ( 1 ), 189 – 207 ( 2001 ).
  • Feng S-S Chien S . Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases . Chem. Eng. Sci.58 ( 18 ), 4087 – 4114 ( 2003 ).
  • Marchal S Hor AE Millard M Gillon V Bezdetnaya L . Anticancer drug delivery: an update on clinically applied nanotherapeutics . Drugs75 ( 14 ), 1601 – 1611 ( 2015 ).
  • Paz MFCJ Gomes AL Islam MT et al. Assessment of chemotherapy on various biochemical markers in breast cancer patients . J. Cell. Biochem.119 ( 3 ), 2923 – 2928 ( 2017 ).
  • Matsumura Y Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res.46 ( 12 Part 1 ), 6387 – 6392 ( 1986 ).
  • Gerlowski LE Jain RK . Microvascular permeability of normal and neoplastic tissues . Microvasc. Res.31 ( 3 ), 288 – 305 ( 1986 ).
  • Wilhelm S Tavares AJ Dai Q et al. Analysis of nanoparticle delivery to tumours . Nat. Rev. Mater1 , 16014 ( 2016 ).
  • Overchuk M Zheng G . Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics . Biomaterials156 , 217 – 237 ( 2018 ).
  • Jain RK Stylianopoulos T . Delivering nanomedicine to solid tumors . Nat. Rev. Clin. Oncol.7 , 653 ( 2010 ).
  • Allen TM . Ligand-targeted therapeutics in anticancer therapy . Nat. Rev. Cancer2 , 750 ( 2002 ).
  • Ferrari M . Cancer nanotechnology: opportunities and challenges . Nat. Rev. Cancer5 , 161 ( 2005 ).
  • Jain RK . The next frontier of molecular medicine: delivery of therapeutics . Nat. Med.4 , 655 ( 1998 ).
  • Doane TL Burda C . The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy . Chem. Soc. Rev.41 ( 7 ), 2885 – 2911 ( 2012 ).
  • Havel HA . Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials . AAPS J.18 ( 6 ), 1351 – 1353 ( 2016 ).
  • Havel H Finch G Strode P et al. Nanomedicines: from bench to bedside and beyond . AAPS J.18 ( 6 ), 1373 – 1378 ( 2016 ).
  • Byrne JD Betancourt T Brannon-Peppas L . Active targeting schemes for nanoparticle systems in cancer therapeutics . Adv. Drug Deliv. Rev.60 ( 15 ), 1615 – 1626 ( 2008 ).
  • Jabir NR Tabrez S Ashraf GM Shakil S Damanhouri GA Kamal MA . Nanotechnology-based approaches in anticancer research . Int. J. Nanomed.7 , 4391 – 4408 ( 2012 ).
  • Tabrez S Priyadarshini M Urooj M et al. Cancer chemoprevention by polyphenols and their potential application as nanomedicine . J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev.31 ( 1 ), 67 – 98 ( 2013 ).
  • Tong R Kohane DS . New strategies in cancer nanomedicine . Annu. Rev. Pharmacol. Toxicol.56 ( 1 ), 41 – 57 ( 2016 ).
  • Yingchoncharoen P Kalinowski DS Richardson DR . Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come . Pharmacol. Rev.68 ( 3 ), 701 – 787 ( 2016 ).
  • Moghimi SM Hunter AC Murray JC . Nanomedicine: current status and future prospects . FASEB J.19 ( 3 ), 311 – 330 ( 2005 ).
  • Chow EK-H Ho D . Cancer nanomedicine: from drug delivery to imaging . Sci. Transl. Med.5 ( 216 ), 216rv214 – 216rv214 ( 2013 ).
  • Wicki A Witzigmann D Balasubramanian V Huwyler J . Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications . J. Control. Rel.200 , 138 – 157 ( 2015 ).
  • Wang R Billone PS Mullett WM . Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials . J. Nanomater.2013 , 12 ( 2013 ).
  • Blanco E Hsiao A Mann AP Landry MG Meric-Bernstam F Ferrari M . Nanomedicine in cancer therapy: innovative trends and prospects . Cancer Sci.102 ( 7 ), 1247 – 1252 ( 2011 ).
  • Shi J Kantoff PW Wooster R Farokhzad OC . Cancer nanomedicine: progress, challenges and opportunities . Nat. Rev. Cancer17 , 20 ( 2016 ).
  • Adams DJ . The valley of death in anticancer drug development: a reassessment . Trends Pharmacol. Sci.33 ( 4 ), 173 – 180 ( 2012 ).
  • Schütz CA Juillerat-Jeanneret L Mueller H Lynch I Riediker M . Therapeutic nanoparticles in clinics and under clinical evaluation . Nanomedicine8 ( 3 ), 449 – 467 ( 2013 ).
  • Sainz V Conniot J Matos AI et al. Regulatory aspects on nanomedicines . Biochem. Biophys. Res. Commun.468 ( 3 ), 504 – 510 ( 2015 ).
  • Wolfram J Zhu M Yang Y et al. Safety of nanoparticles in medicine . Curr. Drug Targets16 ( 14 ), 1671 – 1681 ( 2015 ).
  • Caster JM Patel AN Zhang T Wang A . Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.9 ( 1 ), e1416 ( 2017 ).
  • Danhier F Feron O Préat V . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery . J. Control. Rel.148 ( 2 ), 135 – 146 ( 2010 ).
  • Wang L Huo M Chen Y Shi J . Tumor microenvironment-enabled nanotherapy . Adv. Health Mater.7 ( 8 ), 1701156 ( 2018 ).
  • Moghimi SM Simberg D . Nanoparticle transport pathways into tumors . J. Nanopart. Res.20 ( 6 ), 169 ( 2018 ).
  • Maeda H . Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity . Adv. Drug Deliv. Rev.91 , 3 – 6 ( 2015 ).
  • Steichen SD Caldorera-Moore M Peppas NA . A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics . Eur. J. Pharm. Sci.48 ( 3 ), 416 – 427 ( 2013 ).
  • Wibroe PP Ahmadvand D Oghabian MA Yaghmur A Moghimi SM . An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome . J. Control. Rel.221 , 1 – 8 ( 2016 ).
  • Boveri T . Concerning the Origin of Malignant Tumours.Company of Biologists , Cambridge, UK ( 2008 ).
  • Feinberg AP Ohlsson R Henikoff S . The epigenetic progenitor origin of human cancer . Nat. Rev. Genet.7 , 21 ( 2006 ).
  • Horsman MR Vaupel P . Pathophysiological basis for the formation of the tumor microenvironment . Front. Oncol.6 , 66 ( 2016 ).
  • Egeblad M Nakasone ES Werb Z . Tumors as organs: complex tissues that interface with the entire organism . Dev. Cell18 ( 6 ), 884 – 901 ( 2010 ).
  • Roberts WG Palade GE . Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor . J. Cell Sci.108 ( 6 ), 2369 – 2379 ( 1995 ).
  • Dellian M Witwer BP Salehi HA Yuan F Jain RK . Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment . Am. J. Pathol.149 ( 1 ), 59 – 71 ( 1996 ).
  • Matsumura Y Kimura M Yamamoto T Maeda H . Involvement of the Kinin-generating cascade in enhanced vascular permeability in tumor tissue . Jpn. J. Cancer Res.79 ( 12 ), 1327 – 1334 ( 1988 ).
  • Kuwano M Fukushi J-I Okamoto M et al. Angiogenesis factors . Intern. Med.40 ( 7 ), 565 – 572 ( 2001 ).
  • Prabhakar U Maeda H Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology . Cancer Res.73 ( 8 ), 2412 – 2417 ( 2013 ).
  • Gabizon AA . Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes . Cancer Res.52 ( 4 ), 891 – 896 ( 1992 ).
  • Iyer AK Khaled G Fang J Maeda H . Exploiting the enhanced permeability and retention effect for tumor targeting . Drug Discov. Today11 ( 17 ), 812 – 818 ( 2006 ).
  • Chen H Zhang W Zhu G Xie J Chen X . Rethinking cancer nanotheranostics . Nat. Rev. Mater.2 , 17024 ( 2017 ).
  • Hansen AE Petersen AL Henriksen JR et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes . ACS Nano.9 ( 7 ), 6985 – 6995 ( 2015 ).
  • Hanahan D Weinberg RA . The hallmarks of cancer . Cell100 ( 1 ), 57 – 70 ( 2000 ).
  • Liotta LA Kohn EC . The microenvironment of the tumour–host interface . Nature411 , 375 ( 2001 ).
  • Fukumura D Jain RK . Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize . J. Cell. Biochem.101 ( 4 ), 937 – 949 ( 2007 ).
  • Yang S Gao H . Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy . Pharmacol. Res.126 , 97 – 108 ( 2017 ).
  • Vaupel P Mayer A . Hypoxia in cancer: significance and impact on clinical outcome . Cancer Metastasis Rev.26 ( 2 ), 225 – 239 ( 2007 ).
  • Brown JM Giaccia AJ . The unique physiology of solid tumors: opportunities (and Problems) for cancer therapy . Cancer Res.58 ( 7 ), 1408 – 1416 ( 1998 ).
  • Wilson WR Hay MP . Targeting hypoxia in cancer therapy . Nat. Rev. Cancer11 , 393 ( 2011 ).
  • Rankin EB Giaccia AJ . Hypoxic control of metastasis . Science352 ( 6282 ), 175 – 180 ( 2016 ).
  • Thambi T Deepagan VG Yoon HY et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery . Biomaterials35 ( 5 ), 1735 – 1743 ( 2014 ).
  • Malamas AS Jin E Gujrati M Lu Z-R . Dynamic contrast enhanced MRI assessing the antiangiogenic effect of silencing HIF-1α with targeted multifunctional ECO/siRNA nanoparticles . Mol. Pharm.13 ( 7 ), 2497 – 2506 ( 2016 ).
  • Reina-Campos M Moscat J Diaz-Meco M . Metabolism shapes the tumor microenvironment . Curr. Opin. Cell Biol.48 , 47 – 53 ( 2017 ).
  • Tannock IF Rotin D . Acid pH in tumors and its potential for therapeutic exploitation . Cancer Res.49 ( 16 ), 4373 – 4384 ( 1989 ).
  • Ding C Tong L Feng J Fu J . Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment . Molecules21 ( 12 ), 1715 ( 2016 ).
  • Du J Lane LA Nie S . Stimuli-responsive nanoparticles for targeting the tumor microenvironment . J. Control Release219 , 205 – 214 ( 2015 ).
  • Huang W-C Chen S-H Chiang W-H et al. Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor . Biomacromolecules17 ( 12 ), 3883 – 3892 ( 2016 ).
  • Stubbs M Mcsheehy PMJ Griffiths JR Bashford CL . Causes and consequences of tumour acidity and implications for treatment . Mol. Med. Today6 ( 1 ), 15 – 19 ( 2000 ).
  • Lee ES Gao Z Bae YH . Recent progress in tumor pH targeting nanotechnology . J. Control. Rel.132 ( 3 ), 164 – 170 ( 2008 ).
  • Lee ES Oh KT Kim D Youn YS Bae YH . Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine) . J. Control. Rel.123 ( 1 ), 19 – 26 ( 2007 ).
  • Li H-J Du J-Z Liu J et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration . ACS Nano.10 ( 7 ), 6753 – 6761 ( 2016 ).
  • Chiang Y-T Lo C-L . pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy . Biomaterials35 ( 20 ), 5414 – 5424 ( 2014 ).
  • Karimi M Eslami M Sahandi-Zangabad P et al. pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.8 ( 5 ), 696 – 716 ( 2016 ).
  • Kang T Li F Baik S Shao W Ling D Hyeon T . Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy . Biomaterials136 , 98 – 114 ( 2017 ).
  • Ganta S Devalapally H Shahiwala A Amiji M . A review of stimuli-responsive nanocarriers for drug and gene delivery . J. Control. Rel.126 ( 3 ), 187 – 204 ( 2008 ).
  • Cheng R Meng F Deng C Klok HA Zhong Z . Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery . Biomaterials34 ( 14 ), 3647 – 3657 ( 2013 ).
  • Khawar IA Kim JH Kuh H-J . Improving drug delivery to solid tumors: priming the tumor microenvironment . J. Control. Rel.201 , 78 – 89 ( 2015 ).
  • Milosevic M Fyles A Hedley D Hill R . The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure . Semin. Radiat. Oncol.14 ( 3 ), 249 – 258 ( 2004 ).
  • Jain RK . Transport of molecules in the tumor interstitium: a review . Cancer Res.47 ( 12 ), 3039 – 3051 ( 1987 ).
  • Chen H Zhang W Zhu G Xie J Chen X . Rethinking cancer nanotheranostics . Nat. Rev. Mater.2 , 17024 ( 2017 ).
  • Pietroiusti A Campagnolo L Fadeel B . Interactions of engineered nanoparticles with organs protected by internal biological barriers . Small9 ( 9-10 ), 1557 – 1572 ( 2013 ).
  • Meng H Leong W Leong KW Chen C Zhao Y . Walking the line: the fate of nanomaterials at biological barriers . Biomaterials174 , 41 – 53 ( 2018 ).
  • Blanco E Shen H Ferrari M . Principles of nanoparticle design for overcoming biological barriers to drug delivery . Nat. Biotechnol.33 , 941 ( 2015 ).
  • Yu M Zheng J . Clearance pathways and tumor targeting of imaging nanoparticles . ACS Nano.9 ( 7 ), 6655 – 6674 ( 2015 ).
  • Sun T Zhang YS Pang B Hyun DC Yang M Xia Y . Engineered nanoparticles for drug delivery in cancer therapy . Angew. Chem. Int. Ed. Engl.53 ( 46 ), 12320 – 12364 ( 2014 ).
  • Bertrand N Wu J Xu X Kamaly N Farokhzad OC . Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology . Adv. Drug Deliv. Rev.66 , 2 – 25 ( 2014 ).
  • Mura S Nicolas J Couvreur P . Stimuli-responsive nanocarriers for drug delivery . Nat. Mater.12 , 991 ( 2013 ).
  • Nel AE Mädler L Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface . Nat. Mater.8 , 543 ( 2009 ).
  • Prantner AM Scholler N . Biological barriers and current strategies for modifying nanoparticle bioavailability . J. Nanosci. Nanotechnol.14 ( 1 ), 115 – 125 ( 2014 ).
  • Landesman-Milo D Peer D . Altering the immune response with lipid-based nanoparticles . J. Control. Rel.161 ( 2 ), 600 – 608 ( 2012 ).
  • Weissleder R Nahrendorf M Pittet MJ . Imaging macrophages with nanoparticles . Nat. Mater.13 , 125 ( 2014 ).
  • Moghimi SM Andersen AJ Ahmadvand D Wibroe PP Andresen TL Hunter AC . Material properties in complement activation . Adv. Drug Deliv. Rev.63 ( 12 ), 1000 – 1007 ( 2011 ).
  • Markiewski MM Deangelis RA Benencia F et al. Modulation of the antitumor immune response by complement . Nat. Immunol.9 , 1225 ( 2008 ).
  • Moghimi SM . Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth . J. Control. Rel.190 , 556 – 562 ( 2014 ).
  • Oda M Yokomori H Han JY . Regulatory mechanisms of hepatic microcirculation . Clin. Hemorheol. Microcirc.29 ( 3-4 ), 167 – 182 ( 2003 ).
  • Naito M Hasegawa G Ebe Y Yamamoto T . Differentiation and function of Kupffer cells . Med. Electron. Microsc.37 ( 1 ), 16 – 28 ( 2004 ).
  • Moghimi SM Hunter AC Murray JC . Long-circulating and target-specific nanoparticles: theory to practice . Pharmacol. Rev.53 ( 2 ), 283 – 318 ( 2001 ).
  • Owens DE Peppas NA . Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles . Int. J. Pharm.307 ( 1 ), 93 – 102 ( 2006 ).
  • Harashima H Sakata K Funato K Kiwada H . Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes . Pharm. Res.11 ( 3 ), 402 – 406 ( 1994 ).
  • Decuzzi P Godin B Tanaka T et al. Size and shape effects in the biodistribution of intravascularly injected particles . J. Control. Rel.141 ( 3 ), 320 – 327 ( 2010 ).
  • Kulkarni SA Feng S-S . Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery . Pharm. Res.30 ( 10 ), 2512 – 2522 ( 2013 ).
  • Dobrovolskaia MA Aggarwal P Hall JB Mcneil SE . Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution . Mol. Pharm.5 ( 4 ), 487 – 495 ( 2008 ).
  • Desai N . Challenges in development of nanoparticle-based therapeutics . AAPS J.14 ( 2 ), 282 – 295 ( 2012 ).
  • Knop K Hoogenboom R Fischer D Schubert US . Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives . Angew. Chem. Int. Ed. Engl.49 ( 36 ), 6288 – 6308 ( 2010 ).
  • Gref R Minamitake Y Peracchia M Trubetskoy V Torchilin V Langer R . Biodegradable long-circulating polymeric nanospheres . Science263 ( 5153 ), 1600 – 1603 ( 1994 ).
  • Barenholz Y . Doxil® — The first FDA-approved nano-drug: lessons learned . J. Control. Rel.160 ( 2 ), 117 – 134 ( 2012 ).
  • Walkey CD Olsen JB Guo H Emili A Chan WCW . Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake . J. Am. Chem. Soc.134 ( 4 ), 2139 – 2147 ( 2012 ).
  • Schöttler S Becker G Winzen S et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers . Nat. Nanotech.11 , 372 ( 2016 ).
  • Moghimi SM Simberg D . Complement activation turnover on surfaces of nanoparticles . Nano. Today15 , 8 – 10 ( 2017 ).
  • Von Roemeling C Jiang W Chan CK Weissman IL Kim BY . Breaking down the barriers to precision cancer nanomedicine . Trends Biotechnol.35 ( 2 ), 159 – 171 ( 2017 ).
  • Hu C-MJ Zhang L Aryal S Cheung C Fang RH Zhang L . Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform . Proc. Natl Acad. Sci. USA108 ( 27 ), 10980 – 10985 ( 2011 ).
  • Parodi A Quattrocchi N Van De Ven AL et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions . Nat. Nanotech.8 , 61 ( 2012 ).
  • Rodriguez PL Harada T Christian DA Pantano DA Tsai RK Discher DE . Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles . Science339 ( 6122 ), 971 – 975 ( 2013 ).
  • Zolnik BS Gonzalez-Fernandez A Sadrieh N Dobrovolskaia MA . Nanoparticles and the immune system . Endocrinology151 ( 2 ), 458 – 465 ( 2010 ).
  • Liu J Yu M Zhou C Zheng J . Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology . Mater. Today16 ( 12 ), 477 – 486 ( 2013 ).
  • Longmire M Choyke PL Kobayashi H . Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats . Nanomedicine (Lond).3 ( 5 ), 703 – 717 ( 2008 ).
  • Choi HS Liu W Liu F et al. Design considerations for tumor-targeted nanoparticles . Nat. Nanotechnol.5 ( 1 ), 42 – 47 ( 2010 ).
  • Alexiou C . Nanomedicine: Basic and Clinical Applications in Diagnostics and Therapy.Karger Medical and Scientific Publishers , Basel, Switzerland , 2 ( 2011 ).
  • Soo Choi H Liu W Misra P et al. Renal clearance of quantum dots . Nat. Biotechnol.25 , 1165 ( 2007 ).
  • Van Haute D Berlin JM . Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles . Ther. Deliv.8 ( 9 ), 763 – 774 ( 2017 ).
  • Wu W Luo L Wang Y et al. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications . Theranostics8 ( 11 ), 3038 – 3058 ( 2018 ).
  • Ruggiero A Villa CH Bander E et al. Paradoxical glomerular filtration of carbon nanotubes . Proc. Natl Acad. Sci. USA107 ( 27 ), 12369 – 12374 ( 2010 ).
  • Ehlerding EB Chen F Cai W . Biodegradable and renal clearable inorganic nanoparticles . Adv. Sci.3 ( 2 ), 1500223 ( 2016 ).
  • Chang EH Harford JB Eaton MaW et al. Nanomedicine: past, present and future – A global perspective . Biochem. Biophys. Res. Commun.468 ( 3 ), 511 – 517 ( 2015 ).
  • Kawasaki ES Player A . Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer . Nanomedicine1 ( 2 ), 101 – 109 ( 2005 ).
  • Kim BYS Rutka JT Chan WCW . Nanomedicine . N. Engl. J. Med.363 ( 25 ), 2434 – 2443 ( 2010 ).
  • Pourmand A Pourmand MR Wang J Shesser R . Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty – first century . DARU J. Pharm. Sci20 ( 1 ), 26 – 26 ( 2012 ).
  • Zhang L Gu F Chan J Wang A Langer R Farokhzad O . Nanoparticles in medicine: therapeutic applications and developments . Clin. Pharmacol. Ther.83 ( 5 ), 761 – 769 ( 2008 ).
  • Svenson S . Clinical translation of nanomedicines . Curr. Opin. Solid State Mater. Sci.16 ( 6 ), 287 – 294 ( 2012 ).
  • Freitas RA . What is nanomedicine?Nanomedicine1 ( 1 ), 2 – 9 ( 2005 ).
  • Strebhardt K Ullrich A . Paul Ehrlich's magic bullet concept: 100 years of progress . Nat. Rev. Cancer8 , 473 ( 2008 ).
  • Lammers T Aime S Hennink WE Storm G Kiessling F . Theranostic nanomedicine . Acc. Chem. Res.44 ( 10 ), 1029 – 1038 ( 2011 ).
  • Al-Jamal WT Kostarelos K . Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine . Acc. Chem. Res.44 ( 10 ), 1094 – 1104 ( 2011 ).
  • Lehner R Wang X Marsch S Hunziker P . Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application . Nanomedicine9 ( 6 ), 742 – 757 ( 2013 ).
  • Farokhzad OC Langer R . Nanomedicine: developing smarter therapeutic and diagnostic modalities . Adv. Drug Deliv. Rev.58 ( 14 ), 1456 – 1459 ( 2006 ).
  • Sager HB Dutta P Dahlman JE et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction . Sci. Transl. Med.8 ( 342 ), 342ra380 – 342ra380 ( 2016 ).
  • Kranz LM Diken M Haas H et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy . Nature534 , 396 ( 2016 ).
  • Sohail A Iqbal A Mohammad Zaki A et al. Nanomedicines as cancer therapeutics: current status . Curr. Cancer Drug Targets13 ( 4 ), 362 – 378 ( 2013 ).
  • ClinicalTrials.gov and https://clinicaltrials.gov .
  • Etheridge ML Campbell SA Erdman AG Haynes CL Wolf SM Mccullough J . The big picture on nanomedicine: the state of investigational and approved nanomedicine products . Nanomedicine9 ( 1 ), 1 – 14 ( 2013 ).
  • Flynn T Wei C . The pathway to commercialization for nanomedicine . Nanomedicine1 ( 1 ), 47 – 51 ( 2005 ).
  • Couvreur P . Nanoparticles in drug delivery: past, present and future . Adv. Drug Deliv. Rev.65 ( 1 ), 21 – 23 ( 2013 ).
  • Bharali DJ Mousa SA . Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise . Pharmacol. Ther.128 ( 2 ), 324 – 335 ( 2010 ). www.sciencedirect.com/science/article/pii/S0163725810001506?via=ihub .
  • Ventola CL . The nanomedicine revolution: part 1: emerging concepts . Pharm. Ther.37 ( 9 ), 512 – 525 ( 2012 ).
  • Ventola CL . The nanomedicine revolution: part 2: current and future clinical applications . Pharm. Ther.37 ( 10 ), 582 – 591 ( 2012 ).
  • Young SWS Stenzel M Jia-Lin Y . Nanoparticle-siRNA: a potential cancer therapy?Crit. Rev. Oncol. Hematol.98 , 159 – 169 ( 2016 ).
  • Fadeel B Garcia-Bennett AE . Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications . Adv. Drug Deliv. Rev.62 ( 3 ), 362 – 374 ( 2010 ).
  • Hutter E Maysinger D . Gold nanoparticles and quantum dots for bioimaging . Microsc. Res. Tech.74 ( 7 ), 592 – 604 ( 2011 ).
  • Mukherjee P Bhattacharya R Mukhopadhyay D . Gold nanoparticles bearing functional anti-cancer drug and anti-angiogenic agent: a ‘2 in 1’ system with potential application in cancer therapeutics . J. Biomed. Nanotechnol.1 ( 2 ), 224 – 228 ( 2005 ).
  • Arvizo RR Rana S Miranda OR Bhattacharya R Rotello VM Mukherjee P . Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge . Nanomedicine7 ( 5 ), 580 – 587 ( 2011 ).
  • Zhang H Yee D Wang C . Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives . Nanomedicine3 ( 1 ), 83 – 91 ( 2008 ).
  • Auffan M Rose J Bottero JY Lowry GV Jolivet JP Wiesner MR . Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective . Nat. Nanotechnol.4 ( 10 ), 634 – 641 ( 2009 ).
  • Puri A Loomis K Smith B et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic . Crit. Rev. Ther. Drug Carrier Syst.26 ( 6 ), 523 – 580 ( 2009 ).
  • Yaghmur A Glatter O . Characterization and potential applications of nanostructured aqueous dispersions . Adv. Colloid Interface Sci.147 – 148333 – 342 ( 2009 ).
  • Wibroe PP Mat Azmi ID Nilsson C Yaghmur A Moghimi SM . Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers . Nanomedicine11 ( 8 ), 1909 – 1914 ( 2015 ).
  • Azmi ID Moghimi SM Yaghmur A . Cubosomes and hexosomes as versatile platforms for drug delivery . Ther. Deliv.6 ( 12 ), 1347 – 1364 ( 2015 ).
  • Mat Azmi ID Wu L Wibroe PP et al. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers . Langmuir31 ( 18 ), 5042 – 5049 ( 2015 ).
  • Azmi IDM Østergaard J Stürup S et al. Cisplatin encapsulation generates morphologically different multicompartments in the internal nanostructures of nonlamellar liquid-crystalline self-assemblies . Langmuir34 ( 22 ), 6570 – 6581 ( 2018 ).
  • Angelova A Garamus VM Angelov B Tian Z Li Y Zou A . Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents . Adv. Colloid Interface Sci.249 , 331 – 345 ( 2017 ).
  • Nilsson C Barrios-Lopez B Kallinen A et al. SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications . Biomaterials34 ( 33 ), 8491 – 8503 ( 2013 ).
  • Meli V Caltagirone C Sinico C et al. Theranostic hexosomes for cancer treatments: an in vitro study . New J. Chem.41 ( 4 ), 1558 – 1565 ( 2017 ).
  • Shao X Bor G Al-Hosayni S Salentinig S Yaghmur A . Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides . Phys. Chem. Chem. Phys.20 ( 37 ), 23928 – 23941 ( 2018 ).
  • Yaghmur A Al-Hosayni S Amenitsch H Salentinig S . Structural investigation of bulk and dispersed inverse lyotropic hexagonal liquid crystalline phases of eicosapentaenoic acid monoglyceride . Langmuir33 ( 49 ), 14045 – 14057 ( 2017 ).
  • Zhong J Dai LC . Targeting liposomal nanomedicine to cancer therapy . Technol. Cancer Res. Treat.11 ( 5 ), 475 – 481 ( 2012 ).
  • Murgia S Bonacchi S Falchi AM et al. Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications . Langmuir29 ( 22 ), 6673 – 6679 ( 2013 ).
  • Gontsarik M Buhmann MT Yaghmur A Ren Q Maniura-Weber K Salentinig S . Antimicrobial peptide-driven colloidal transformations in liquid-crystalline nanocarriers . J. Phys. Chem. Lett.7 ( 17 ), 3482 – 3486 ( 2016 ).
  • Yaghmur A De Campo L Sagalowicz L Leser ME Glatter O . Emulsified microemulsions and oil-containing liquid crystalline phases . Langmuir21 ( 2 ), 569 – 577 ( 2005 ).
  • Malmsten M . Soft drug delivery systems . Soft Matter2 ( 9 ), 760 – 769 ( 2006 ).
  • Guo C Wang J Cao F Lee RJ Zhai G . Lyotropic liquid crystal systems in drug delivery . Drug Discov. Today15 ( 23 ), 1032 – 1040 ( 2010 ).
  • Yaghmur A Rappolt M . Chapter five - The micellar cubic Fd3m Phase: recent advances in the structural characterization and potential applications . In : Ales IglicAChandrashekharV. KulkarnMichaelRappol ( Eds ). Advances in Planar Lipid Bilayers and Liposomes (Volume 18) . Academic Press , MA, USA , 111 – 145 ( 2013 ).
  • Ferrer-Tasies L Moreno-Calvo E Cano-Sarabia M et al. Quatsomes: vesicles formed by self-assembly of sterols and quaternary ammonium surfactants . Langmuir29 ( 22 ), 6519 – 6528 ( 2013 ).
  • Chen Y Angelova A Angelov B et al. Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines . J. Mater. Chem. B3 ( 39 ), 7734 – 7744 ( 2015 ).
  • Angelov B Garamus VM Drechsler M Angelova A . Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs . J. Mol. Liq.235 , 83 – 89 ( 2017 ).
  • Azmi IDM Wibroe PP Wu L-P et al. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies . J. Control. Rel.239 , 1 – 9 ( 2016 ).
  • Azmi ID Wu L Wibroe PP et al. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers . Langmuir31 ( 18 ), 5042 – 5049 ( 2015 ).
  • Hinton TM Grusche F Acharya D et al. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells . Toxicol. Res.3 ( 1 ), 11 – 22 ( 2014 ).
  • Tran N Mulet X Hawley AM et al. Nanostructure and cytotoxicity of self-assembled monoolein-capric acid lyotropic liquid crystalline nanoparticles . RSC Adv.5 ( 34 ), 26785 – 26795 ( 2015 ).
  • Leesajakul W Nakano M Taniguchi A Handa T . Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma . Colloids Surf. B Biointerfaces34 ( 4 ), 253 – 258 ( 2004 ).
  • Prajapati R Salentinig S Yaghmur A . Temperature triggering of kinetically trapped self-assemblies in citrem-phospholipid nanoparticles . Chem. Phys. Lipids216 , 30 – 38 ( 2018 ).
  • Nilsson C Edwards K Eriksson J et al. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem . Langmuir28 ( 32 ), 11755 – 11766 ( 2012 ).
  • Khaliqi K Ghazal A Azmi IDM et al. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics . Analyst142 ( 17 ), 3118 – 3126 ( 2017 ).
  • Tiberg F Johnsson M Nistor C Joabsson F . Self-assembling lipid formulations . In : WrightJCBurgessDJ ( Eds ). Long Acting Injections and Implants . Springer , Berlin, Germany , 315 – 333 ( 2012 ).
  • Von Eckardstein KL Reszka R Kiwit JC . Intracavitary chemotherapy (paclitaxel/carboplatin liquid crystalline cubic phases) for recurrent glioblastoma – clinical observations . J. Neurooncol.74 ( 3 ), 305 – 309 ( 2005 ).
  • Nilsson C Østergaard J Larsen SW et al. PEGylation of phytantriol-based lyotropic liquid crystalline particles The effect of lipid compositon, PEG chain length, and temperature on the internal nanostructure . Langmuir30 ( 22 ), 6398 – 6407 ( 2014 ).
  • Yaghmur A Rappolt M Østergaard J Larsen C Larsen SW . Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition . Langmuir28 ( 5 ), 2881 – 2889 ( 2012 ).
  • Yaghmur A Larsen SW Schmitt M et al. In situ characterization of lipidic bupivacaine-loaded formulations . Soft Matter7 ( 18 ), 8291 – 8295 ( 2011 ).
  • Yaghmur A Rappolt M Larsen SW . In situ forming drug delivery systems based on lyotropic liquid crystalline phases: structural characterization and release properties . J. Drug Deliv. Sci. Technol.23 ( 4 ), 325 – 332 ( 2013 ).
  • Svenson S . What nanomedicine in the clinic right now really forms nanoparticles?Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.6 ( 2 ), 125 – 135 ( 2014 ).
  • Bobo D Robinson KJ Islam J Thurecht KJ Corrie SR . Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date . Pharm. Res.33 ( 10 ), 2373 – 2387 ( 2016 ).
  • Centerwatch . 2017 FDA approved drugs . www.center-watch.com/drug-information/fda-approved-drugs .
  • Food and Drug Administration . Novel drug approvals for 2017 . www.fda.gov/drugs/developmentapprovalprocess/druginnovation/ucm537040 .
  • Chang H-I Yeh M-K . Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy . Int. J. Nanomed.7 , 49 – 60 ( 2012 ).
  • Wang AZ Langer R Farokhzad OC . Nanoparticle delivery of cancer drugs . Annu. Rev. Med.63 ( 1 ), 185 – 198 ( 2012 ).
  • Pillai G . Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development . SOJ Pharm. Pharm. Sci.1 ( 2 ), 13 ( 2014 ).
  • Gabizon AA . Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy . Cancer Investig.19 ( 4 ), 424 – 436 ( 2001 ).
  • Gabizon A Goren D Horowitz AT Tzemach D Lossos A Siegal T . Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals . Adv. Drug Deliv. Rev.24 ( 2 ), 337 – 344 ( 1997 ).
  • Bobo D Robinson KJ Islam J Thurecht KJ Corrie SR . Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date . Pharm Res.33 ( 10 ), 2373 – 2387 ( 2016 ).
  • Wacker M . Nanocarriers for intravenous injection--the long hard road to the market . Int. J. Pharm.457 ( 1 ), 50 – 62 ( 2013 ).
  • Boulikas T . Clinical overview on Lipoplatin™: a successful liposomal formulation of cisplatin . Expert Opin. Investig. Drugs18 ( 8 ), 1197 – 1218 ( 2009 ).
  • Venditto VJ Szoka FC . Cancer nanomedicines: so many papers and so few drugs!Adv. Drug Deliv. Rev.65 ( 1 ), 80 – 88 ( 2013 ).
  • Dawidczyk CM Kim C Park JH et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines . J. Control. Rel.187 , 133 – 144 ( 2014 ).
  • Ventola CL . Progress in nanomedicine: approved and investigational nanodrugs . Pharm. Ther.42 ( 12 ), 742 – 755 ( 2017 ).
  • Akhter S Ahmad I Ahmad MZ et al. Nanomedicines as cancer therapeutics: current status . Curr. Cancer Drug Targets13 ( 4 ), 362 – 378 ( 2013 ).
  • Stern ST Hall JB Lee LY et al. Translational considerations for cancer nanomedicine . J. Control. Rel.146 ( 2 ), 164 – 174 ( 2010 ).
  • Oberdörster G . Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology . J. Intern. Med.267 ( 1 ), 89 – 105 ( 2009 ).
  • Miller J . Beyond biotechnology: FDA regulation of nanomedicine . Columbia Sci. Technol. Law Rev.4 ( 2 ), ( 2003 ).
  • Bawa R Audette GF Rubinstein I . Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy, and Clinical Applications . Pan Stanford , Boulevard, Singapore ( 2016 ).
  • Bawa R . Regulating nanomedicine-can the FDA handle it?Curr. Drug Deliv.8 ( 3 ), 227 – 234 ( 2011 ).
  • Tinkle S Mcneil SE Mühlebach S et al. Nanomedicines: addressing the scientific and regulatory gap . Ann. N. Y. Acad. Sci.1313 ( 1 ), 35 – 56 ( 2014 ).
  • Bosetti R Vereeck L . Future of nanomedicine: obstacles and remedies . Nanomedicine6 ( 4 ), 747 – 755 ( 2011 ).
  • Satalkar P Elger BS Hunziker P Shaw D . Challenges of clinical translation in nanomedicine: a qualitative study . Nanomedicine12 ( 4 ), 893 – 900 ( 2016 ).
  • Davis ME Chen Z Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer . Nat. Rev. Drug Discov.7 , 771 ( 2008 ).
  • Sun Q Radosz M Shen Y . Challenges in design of translational nanocarriers . J. Control. Rel.164 ( 2 ), 156 – 169 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.