230
Views
0
CrossRef citations to date
0
Altmetric
Special Report

A Review of CCR5 Antibodies Against HIV: Current and Future Aspects

, &
Pages 107-112 | Received 26 Nov 2018, Accepted 15 Jan 2019, Published online: 07 Feb 2019

References

  • Fact sheet – Latest statistics on the status of the AIDS epidemic . www.unaids.org/en/resources/fact-sheet .
  • German Advisory Committee Blood (Arbeitskreis Blut) Subgroup ‘Assessment of Pathogens Transmissible by Blood’ . Human Immunodeficiency Virus (HIV) . Transfus. Med. Hemother.43 ( 3 ), 203 – 222 ( 2016 ).
  • Ayouba A Akoua-Koffi C Calvignac-Spencer S et al. Evidence for continuing cross-species transmission of SIVsmm to humans: characterization of a new HIV-2 lineage in rural Cote d'Ivoire . AIDS27 ( 15 ), 2488 – 2491 ( 2013 ).
  • Goodsell D . HIV envelope glycoprotein . doi:10.2210/rcsb_pdb/mom_2014_1 ( 2014 ).
  • Greene WC . AIDS and the immune system . Sci. Am.269 ( 3 ), 98 – 105 ( 1993 ).
  • Sierra S Kupfer B Kaiser R . Basics of the virology of HIV-1 and its replication . J. Clin. Virol.34 ( 4 ), 233 – 244 ( 2005 ).
  • Sundquist WI Krausslich HG . HIV-1 assembly, budding, and maturation . Cold Spring Harb. Perspect. Med.2 ( 7 ), a006924 ( 2012 ).
  • Garg H Blumenthal R . Role of HIV Gp41 mediated fusion/hemifusion in bystander apoptosis . Cell. Mol. Life Sci.65 ( 20 ), 3134 – 3144 ( 2008 ).
  • https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/73/the-hiv-life-cycle (accessed July32018).
  • Lackner AA Mohan M Veazey RS . The gastrointestinal tract and AIDS pathogenesis . Gastroenterology136 ( 6 ), 1965 – 1978 ( 2009 ).
  • Rao VR Ruiz AP Prasad VR . Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND) . AIDS Res. Ther.11 , 13 ( 2014 ).
  • Rottman JB Ganley KP Williams K Wu LJ Mackay CR Ringler DJ . Cellular localization of the chemokine receptor CCR5 – correlation to cellular targets of HIV-1 infection . Am. J. Pathol.151 ( 5 ), 1341 – 1351 ( 1997 ).
  • Liu R Paxton WA Choe S et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection . Cell86 ( 3 ), 367 – 377 ( 1996 ).
  • Carrington M Dean M Martin MP O'brien SJ . Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences . Hum. Mol. Genet.8 ( 10 ), 1939 – 1945 ( 1999 ).
  • Samson M Libert F Doranz BJ et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene . Nature382 ( 6593 ), 722 – 725 ( 1996 ).
  • Smalls-Mantey A Doria-Rose N Klein R et al. Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding . J. Virol.86 ( 16 ), 8672 – 8680 ( 2012 ).
  • Ferrari G Haynes BF Koenig S Nordstrom JL Margolis DM Tomaras GD . Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection . Nat. Rev. Drug Discov.15 ( 12 ), 823 – 834 ( 2016 ).
  • Cavacini LA Samore MH Gambertoglio J et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120 . AIDS Res. Hum. Retroviruses14 ( 7 ), 545 – 550 ( 1998 ).
  • Eda Y Murakami T Ami Y et al. Anti-V3 humanized antibody KD-247 effectively suppresses ex vivo generation of human immunodeficiency virus type 1 and affords sterile protection of monkeys against a heterologous simian/human immunodeficiency virus infection . J. Virol.80 ( 11 ), 5563 – 5570 ( 2006 ).
  • Huang J Kang BH Pancera M et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface . Nature515 ( 7525 ), 138 – 142 ( 2014 ).
  • Jacobson JM Thompson MA Lalezari JP et al. Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody . J. Infect. Dis.201 ( 10 ), 1481 – 1487 ( 2010 ).
  • Kwong PD Mascola JR . Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies . Immunity37 ( 3 ), 412 – 425 ( 2012 ).
  • Lalezari J Yadavalli GK Para M et al. Safety, pharmacokinetics, and antiviral activity of HGS004, a novel fully human IgG4 monoclonal antibody against CCR5, in HIV-1-infected patients . J. Infect. Dis.197 ( 5 ), 721 – 727 ( 2008 ).
  • Li L Tian JH Yang K Zhang P Jia WQ . Humanized PA14 (a monoclonal CCR5 antibody) for treatment of people with HIV infection . Cochrane Database Syst. Rev. doi:10.1002/14651858.CD008439.pub3 ( 7 ), CD008439 ( 2014 ).
  • West AP , Jr. Scharf L Scheid JF Klein F Bjorkman PJ Nussenzweig MC . Structural insights on the role of antibodies in HIV-1 vaccine and therapy . Cell156 ( 4 ), 633 – 648 ( 2014 ).
  • Walker LM Huber M Doores KJ et al. Broad neutralization coverage of HIV by multiple highly potent antibodies . Nature477 ( 7365 ), 466 – 470 ( 2011 ).
  • Muster T Steindl F Purtscher M et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1 . J. Virol.67 ( 11 ), 6642 – 6647 ( 1993 ).
  • Mayer KH Seaton KE Huang Y et al. Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: Results of a Phase 1 randomized trial . PLoS Med.14 ( 11 ), e1002435 ( 2017 ).
  • Ji C Zhang J Dioszegi M et al. CCR5 small-molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by cobinding to the receptor . Mol. Pharmacol.72 ( 1 ), 18 – 28 ( 2007 ).
  • Watson C Jenkinson S Kazmierski W Kenakin T . The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor . Mol. Pharmacol.67 ( 4 ), 1268 – 1282 ( 2005 ).
  • Woollard SM Kanmogne GD . Maraviroc: a review of its use in HIV infection and beyond . Drug Des. Devel. Ther.9 , 5447 – 5468 ( 2015 ).
  • Pfeifer N Walter H Lengauer T . Association between HIV-1 coreceptor usage and resistance to broadly neutralizing antibodies . J. Acquir. Immune Defic. Syndr.67 ( 2 ), 107 – 112 ( 2014 ).
  • Lewis GK Pazgier M Evans DT et al. Beyond viral neutralization . AIDS Res. Hum. Retroviruses33 ( 8 ), 760 – 764 ( 2017 ).
  • Trkola A Ketas TJ Nagashima KA et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140 . J. Virol.75 ( 2 ), 579 – 588 ( 2001 ).
  • Murga JD Franti M Pevear DC Maddon PJ Olson WC . Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1 . Antimicrob. Agents Chemother.50 ( 10 ), 3289 – 3296 ( 2006 ).
  • Li L Sun T Yang K Zhang P Jia WQ . Monoclonal CCR5 antibody for treatment of people with HIV infection . Cochrane Database Syst. Rev. doi:10.1002/14651858.CD008439.pub2 ( 12 ), CD008439 ( 2010 ).
  • Barouch DH Whitney JB Moldt B et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys . Nature503 ( 7475 ), 224 – 228 ( 2013 ).
  • Kohler G Milstein C . Continuous cultures of fused cells secreting antibody of predefined specificity . Nature256 ( 5517 ), 495 – 497 ( 1975 ).
  • Li F Vijayasankaran N Shen AY Kiss R Amanullah A . Cell culture processes for monoclonal antibody production . MAbs2 ( 5 ), 466 – 479 ( 2010 ).
  • Abu-Absi SF Yang L Thompson P et al. Defining process design space for monoclonal antibody cell culture . Biotechnol. Bioeng.106 ( 6 ), 894 – 905 ( 2010 ).
  • Lai H Engle M Fuchs A et al. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice . Proc. Natl. Acad. Sci. USA107 ( 6 ), 2419 – 2424 ( 2010 ).
  • Lobo ED Hansen RJ Balthasar JP . Antibody pharmacokinetics and pharmacodynamics . J. Pharm. Sci.93 ( 11 ), 2645 – 2668 ( 2004 ).
  • Samaranayake H Wirth T Schenkwein D Raty JK Yla-Herttuala S . Challenges in monoclonal antibody-based therapies . Ann. Med.41 ( 5 ), 322 – 331 ( 2009 ).
  • Roopenian DC Akilesh S . FcRn: the neonatal Fc receptor comes of age . Nat. Rev. Immunol.7 ( 9 ), 715 – 725 ( 2007 ).
  • Liu L . Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins . Protein Cell9 ( 1 ), 15 – 32 ( 2018 ).
  • Parren PW Marx PA Hessell AJ et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro . J. Virol.75 ( 17 ), 8340 – 8347 ( 2001 ).
  • Yokota T Milenic DE Whitlow M Schlom J . Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms . Cancer Res.52 ( 12 ), 3402 – 3408 ( 1992 ).
  • Breedveld FC . Therapeutic monoclonal antibodies . Lancet355 ( 9205 ), 735 – 740 ( 2000 ).
  • Hansel TT Kropshofer H Singer T Mitchell JA George AJ . The safety and side effects of monoclonal antibodies . Nat. Rev. Drug Discov.9 ( 4 ), 325 – 338 ( 2010 ).
  • Catapano AL Papadopoulos N . The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway . Atherosclerosis228 ( 1 ), 18 – 28 ( 2013 ).
  • Stellbrink HJ Le Fevre E Carr A et al. Once-daily maraviroc versus tenofovir/emtricitabine each combined with darunavir/ritonavir for initial HIV-1 treatment . AIDS30 ( 8 ), 1229 – 1238 ( 2016 ).
  • Van Der Ryst E . Maraviroc – a CCR5 antagonist for the treatment of HIV-1 infection . Front. Immunol.6 , 277 ( 2015 ).
  • Pardi N Secreto AJ Shan X et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge . Nat. Commun.8 , 14630 ( 2017 ).
  • Tang X Liang Y Liu X et al. PLGA-PEG nanoparticles coated with anti-CD45RO and loaded with HDAC plus protease inhibitors activate latent HIV and inhibit viral spread . Nanoscale Res. Lett.10 ( 1 ), 413 ( 2015 ).
  • Glass JJ Yuen D Rae J et al. Human immune cell targeting of protein nanoparticles–caveospheres . Nanoscale8 ( 15 ), 8255 – 8265 ( 2016 ).
  • Choi S Lee J Kumar P Lee KY Lee SK . Single chain variable fragment CD7 antibody conjugated PLGA/HDAC inhibitor immuno-nanoparticles: developing human T cell-specific nano-technology for delivery of therapeutic drugs targeting latent HIV . J. Control. Rel.152 ( Suppl. 1 ), e9 – e10 ( 2011 ).
  • Mandal S Belshan M Holec A Zhou Y Destache CJ . An enhanced emtricitabine-loaded long-acting nanoformulation for prevention or treatment of HIV infection . Antimicrob. Agents Chemother.61 ( 1 ), pii: e01475-16 ( 2017 ).
  • Prathipati PK Mandal S Pon G Vivekanandan R Destache CJ . Pharmacokinetic and tissue distribution profile of long acting tenofovir alafenamide and elvitegravir loaded nanoparticles in humanized mice model . Pharm. Res.34 ( 12 ), 2749 – 2755 ( 2017 ).
  • Duan J Freeling JP Koehn J Shu C Ho RJ . Evaluation of atazanavir and darunavir interactions with lipids for developing pH-responsive anti-HIV drug combination nanoparticles . J. Pharm. Sci.103 ( 8 ), 2520 – 2529 ( 2014 ).
  • Margolis DA Brinson CC Smith GHR et al. Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, Phase 2b, dose-ranging trial . Lancet Infect. Dis.15 ( 10 ), 1145 – 1155 ( 2015 ).
  • Margolis DA Gonzalez-Garcia J Stellbrink HJ et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, Phase 2b, non-inferiority trial . Lancet390 ( 10101 ), 1499 – 1510 ( 2017 ).
  • Destache CJ Belgum T Christensen K Shibata A Sharma A Dash A . Combination antiretroviral drugs in PLGA nanoparticle for HIV-1 . BMC Infect. Dis.9 , 198 ( 2009 ).
  • Rusconi S Marcotullio S Cingolani A . Long-acting agents for HIV infection: biological aspects, role in treatment and prevention, and patient's perspective . New Microbiol.40 ( 2 ), 75 – 79 ( 2017 ).
  • Mandal S Prathipati PK Kang G et al. Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission . AIDS31 ( 4 ), 469 – 476 ( 2017 ).
  • Shibata A Mcmullen E Pham A et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment . AIDS Res. Hum. Retroviruses29 ( 5 ), 746 – 754 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.