315
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges of Using Lipopolysaccharides for Cancer Immunotherapy and Potential delivery-based Solutions Thereto

&
Pages 165-187 | Received 31 Dec 2018, Accepted 25 Feb 2019, Published online: 26 Mar 2019

References

  • Ranf S . Immune sensing of lipopolysaccharide in plants and animals: same but different . PLoS Pathog.12 ( 6 ), e1005596 ( 2016 ).
  • Zanoni I Bodio C Broggi A et al. Similarities and differences of innate immune responses elicited by smooth and rough LPS . Immunol. Lett.142 ( 1-2 ), 41 – 47 ( 2012 ).
  • Munford RS . Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant?Infect. Immun.76 ( 2 ), 454 – 465 ( 2008 ).
  • Park BS Lee J-O . Recognition of lipopolysaccharide pattern by TLR4 complexes . Exp. Mol. Med.45 ( 12 ), e66 ( 2013 ).
  • Huber M Kalis C Keck S et al. R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells . Eur. J. Immunol.36 ( 3 ), 701 – 711 ( 2006 ).
  • Pålsson-McDermott EM O’Neill LAJ . Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4 . Immunology113 ( 2 ), 153 – 162 ( 2004 ).
  • Tough DF Sun S Sprent J . T cell stimulation in vivo by lipopolysaccharide (LPS) . J. Exp. Med.185 ( 12 ), 2089 – 2094 ( 1997 ).
  • Inagawa H Kohchi C Soma G-I . Usefulness of oral administration of lipopolysaccharide for disease prevention through the induction of priming in macrophages . Anticancer Res.34 ( 8 ), 4497 – 4501 ( 2014 ).
  • Finn OJ . Immuno-oncology: understanding the function and dysfunction of the immune system in cancer . Ann. Oncol.23 ( Suppl 8 ), viii6 – viii9 ( 2012 ).
  • Dimberu PM Leonhardt RM . Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear . Yale J. Biol. Med.84 ( 4 ), 371 – 380 ( 2011 ).
  • Almeida JPM Figueroa ER Drezek RA . Gold nanoparticle mediated cancer immunotherapy . Nanomed. Nanotechnol. Biol. Med.10 ( 3 ), 503 – 514 ( 2014 ).
  • Shetab Boushehri MA Lamprecht A . TLR4-based immunotherapeutics in cancer: a review of the achievements and shortcomings . Mol. Pharm.15 ( 11 ), 4777 – 4800 ( 2018 ).
  • Maruyama K Selmani Z Ishii H Yamaguchi K . Innate immunity and cancer therapy . Int. Immunopharmacol.11 ( 3 ), 350 – 357 ( 2011 ).
  • Shear MJ . Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhageproducing bacterial polysaccharide . J. Natl Cancer Inst.4 ( 5 ), 461 – 476 ( 1944 ).
  • Mastrangelo G Marzia V Marcer G . Reduced lung cancer mortality in dairy farmers: is endotoxin exposure the key factor?Am. J. Ind. Med.30 ( 5 ), 601 – 609 ( 1996 ).
  • Sone S Moriguchi S Shimizu E Ogushi F Tsubura E . In vitro generation of tumoricidal properties in human alveolar macrophages following interaction with endotoxin . Cancer Res.42 ( 6 ), 2227 – 2231 ( 1982 ).
  • Brendt MJ North RJ Kirstein DP . The immunological basis of endotoxin-induced tumor regression. Requirement for a pre-existing state of concomitant anti-tumor immunity . J. Exp. Med.148 ( 6 ), 1560 – 1569 ( 1978 ).
  • Engelhardt R Mackensen A Galanos C . Phase I trial of intravenously administered endotoxin (Salmonella abortus equi) in cancer patients . Cancer Res.51 ( 10 ), 2524 – 2530 ( 1991 ).
  • Otto F Schmid P Mackensen A et al. Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer . Eur. J. Cancer Oxf. Engl.32A ( 10 ), 1712 – 1718 ( 1996 ).
  • Engelhardt R Mackensen A Galanos C Andreesen R . Biological response to intravenously administered endotoxin in patients with advanced cancer . J. Biol. Response Mod.9 ( 5 ), 480 – 491 ( 1990 ).
  • Inagawa H Nishizawa T Noguchi K et al. Anti-tumor effect of lipopolysaccharide by intradermal administration as a novel drug delivery system . Anticancer Res.17 ( 3C ), 2153 – 2158 ( 1997 ).
  • Goto S Sakai S Kera J Suma Y Soma GI Takeuchi S . Intradermal administration of lipopolysaccharide in treatment of human cancer . Cancer Immunol. Immunother.42 ( 4 ), 255 – 261 ( 1996 ).
  • Chicoine MR Won EK Zahner MC . Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme . Neurosurgery48 ( 3 ), 607 – 614 ; discussion 614–615 ( 2001 ).
  • Shetab Boushehri MA Abdel-Motalleb MM Beduneau A Pellequer Y Lamprecht A . A nanoparticle-based approach to improve the outcome of cancer immunotherapy with lipopolysaccharides . Drug Deliv.25 ( 1 ), 1414 – 1425 ( 2018 ).
  • Garay RP Viens P Bauer J et al. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help . Eur. J. Pharmacol.563 ( 1-3 ), 1 – 17 ( 2007 ).
  • Bahador M Cross AS . From therapy to experimental model: a hundred years of endotoxin administration to human subjects . J. Endotoxin Res.13 ( 5 ), 251 – 279 ( 2007 ).
  • Balk RA . Systemic inflammatory response syndrome (SIRS) . Virulence5 ( 1 ), 20 – 26 ( 2014 ).
  • Davies MG Hagen PO . Systemic inflammatory response syndrome . Br. J. Surg.84 ( 7 ), 920 – 935 ( 1997 ).
  • Dinarello CA Gelfand JA Wolff SM . Anticytokine strategies in the treatment of the systemic inflammatory response syndrome . JAMA269 ( 14 ), 1829 – 1835 ( 1993 ).
  • Grass G Neugebauer E . Risk and prognosis of sepsis current methods on the assessment of immunological status . In : EuganFaist ( Ed. ). Immunological Screening and Immunotherapy in Clinically Ill Patients with Abdominal Infections , Springer Berlin Heidelberg , Berlin, Germany , 1 – 14 ( 2001 ).
  • Jaffer U Wade RG Gourlay T . Cytokines in the systemic inflammatory response syndrome: a review . HSR Proc. Intensive Care Cardiovasc. Anesth.2 ( 3 ), 161 – 175 ( 2010 ).
  • Darville T Giroir B Jacobs R . The systemic inflammatory response syndrome (SIRS): immunology and potential immunotherapy . Infection21 ( 5 ), 279 – 290 ( 1993 ).
  • David SA . Antimicrobial peptides for Gram-negative sepsis: a case for the polymyxins . Front. Immunol.3 ( 2012 ). www.ncbi.nlm.nih.gov/pmc/articles/PMC3419356/
  • Fullerton JN Segre E De Maeyer RPH Maini AAN Gilroy DW . Intravenous endotoxin challenge in healthy humans: an experimental platform to investigate and modulate systemic inflammation . J. Vis. Exp. ( 111 ) ( 2016 ). www.ncbi.nlm.nih.gov/pmc/articles/PMC4942172/ .
  • Hjort PF Rapaport SI . The Shwartzman reaction: pathogenetic mechanism and clinical manifestations . Annu. Rev. Med.16 , 135 – 168 ( 1965 ).
  • McKay DG Jewett JF Reid DE . Endotoxin shock and the generalized Shwartzman reaction in pregnancy . Am. J. Obstet. Gynecol.78 ( 3 ), 546 – 566 ( 1959 ).
  • Meyers BR Hirschman SZ Sloan W . Generalized Shwartzman reaction in man after a dog bite. Consumption coagulopathy, symmetrical peripheral gangrene, and renal cortical necrosis . Ann. Intern. Med.73 ( 3 ), 433 – 438 ( 1970 ).
  • Brozna JP . Shwartzman reaction . Semin. Thromb. Hemost.16 ( 4 ), 326 – 332 ( 1990 ).
  • Fourrier F Chopin C Goudemand J et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies . Chest101 ( 3 ), 816 – 823 ( 1992 ).
  • Ozmen L Pericin M Hakimi J et al. Interleukin 12, interferon gamma, and tumor necrosis factor alpha are the key cytokines of the generalized Shwartzman reaction . J. Exp. Med.180 ( 3 ), 907 – 915 ( 1994 ).
  • Corrigan JJ Abildgaard CF Seeler RA Schulman I . Quantitative aspects of blood coagulation in the generalized Shwartzman reaction. II. Effect of cortisone . Pediatr. Res.1 ( 2 ), 99 – 103 ( 1967 ).
  • Latour J-G Prejean JB Margaretten W . Corticosteroids and the generalized Shwartzman reaction . Am. J. Pathol.65 ( 1 ), 189 – 202 ( 1971 ).
  • Latour JG Láger-Gauthier C . Sensitization to the generalized Shwartzman reaction by catechol-O-methyltransferase inhibitors . Am. J. Pathol.92 ( 2 ), 377 – 387 ( 1978 ).
  • Müller-Berghaus G Goldfinger D Margaretten W McKay DG . Platelet factor 3 and the generalized Shwartzman reaction . Thromb. Diath. Haemorrh.18 ( 3-4 ), 726 – 735 ( 1967 ).
  • Movat HZ Burrowes CE Cybulsky MI Dinarello CA . Acute inflammation and a Shwartzman-like reaction induced by interleukin-1 and tumor necrosis factor. Synergistic action of the cytokines in the induction of inflammation and microvascular injury . Am. J. Pathol.129 ( 3 ), 463 – 476 ( 1987 ).
  • Müller-Berghaus G Schmidt-Ehry B . The role of pregnancy in the induction of the generalized Shwartzman reaction . Am. J. Obstet. Gynecol.114 ( 7 ), 847 – 849 ( 1972 ).
  • Thomas L Stetson CA . Studies on the mechanism of the Shwartzman pnenomenon . J. Exp. Med.89 ( 5 ), 461 – 478 ( 1949 ).
  • Nansen A Randrup Thomsen A . Viral infection causes rapid sensitization to lipopolysaccharide: central role of IFN-alpha beta . J. Immunol.166 ( 2 ), 982 – 988 ( 2001 ).
  • Wronowski T Uchańska-Dudzińska B Teisseyre E Kopeé . Induction of generalized shwartzman reaction (GSR) in irradiated rabbits by a single injection of endotoxin . Thromb. Res.8 ( 4 ), 501 – 512 ( 1976 ).
  • Mimura Y Sakisaka S Harada M Sata M Tanikawa K . Role of hepatocytes in direct clearance of lipopolysaccharide in rats . Gastroenterology109 ( 6 ), 1969 – 1976 ( 1995 ).
  • Satoh M Ando S Shinoda T Yamazaki M . Clearance of bacterial lipopolysaccharides and lipid A by the liver and the role of argininosuccinate synthase . Innate Immun.14 ( 1 ), 51 – 60 ( 2008 ).
  • Shao B Munford R Kitchens RL Varley AW . Hepatic uptake and deacylation of the lipopolysaccharide in bloodborne lipopolysaccharide–lipoprotein complexes . Innate Immun.18 ( 6 ), 825 – 833 ( 2012 ).
  • Scott MJ Billiar TR . β2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes . J. Biol. Chem.283 ( 43 ), 29433 – 29446 ( 2008 ).
  • Gegner JA Ulevitch RJ Tobias PS . Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14 . J. Biol. Chem.270 ( 10 ), 5320 – 5325 ( 1995 ).
  • Feingold KR Funk JL Moser AH Shigenaga JK Rapp JH Grunfeld C . Role for circulating lipoproteins in protection from endotoxin toxicity . Infect. Immun.63 ( 5 ), 2041 – 2046 ( 1995 ).
  • Yao Z Mates JM Cheplowitz AM et al. Blood-borne LPS is rapidly eliminated by liver sinusoidal endothelial cells via HDL . J. Immunol.197 ( 6 ), 2390 – 2399 ( 2016 ).
  • Topchiy E Cirstea M Kong HJ et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor . PloS ONE11 ( 5 ), e0155030 ( 2016 ).
  • Kim SK Kim YC . Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats . Food Chem. Toxicol.40 ( 4 ), 545 – 549 ( 2002 ).
  • Nolan JP . The role of intestinal endotoxin in liver injury: a long and evolving history . Hepatology52 ( 5 ), 1829 – 1835 ( 2010 ).
  • Zhang C Walker LM Hinson JA Mayeux PR . Oxidant stress in rat liver after lipopolysaccharide administration: effect of inducible nitric-oxide synthase inhibition . J. Pharmacol. Exp. Ther.293 ( 3 ), 968 – 972 ( 2000 ).
  • Nolan JP . The contribution of gut-derived endotoxins to liver injury . Yale J. Biol. Med.52 ( 1 ), 127 – 133 ( 1979 ).
  • Turunen U Malkamäki M Valtonen VV et al. Endotoxin and liver diseases. High titres of enterobacterial common antigen antibodies in patients with alcoholic cirrhosis . Gut22 ( 10 ), 849 – 853 ( 1981 ).
  • Tsuji H Mukaida N Harada A et al. Alleviation of lipopolysaccharide-induced acute liver injury in Propionibacterium acnes-primed IFN-gamma-deficient mice by a concomitant reduction of TNF-alpha, IL-12, and IL-18 production . J. Immunol.162 ( 2 ), 1049 – 1055 ( 1999 ).
  • Yang SQ Lin HZ Lane MD Clemens M Diehl AM . Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis . Proc. Natl Acad. Sci. USA94 ( 6 ), 2557 – 2562 ( 1997 ).
  • Schaffert CS Duryee MJ Hunter CD et al. Alcohol metabolites and lipopolysaccharide: roles in the development and/or progression of alcoholic liver disease . World J. Gastroenterol.15 ( 10 ), 1209 – 1218 ( 2009 ).
  • Argenbright LW Barton RW . The Shwartzman response: a model of ICAM-1 dependent vasculitis . Agents Actions34 ( 1-2 ), 208 – 210 ( 1991 ).
  • Chahin AB Opal JM Opal SM . Whatever happened to the Shwartzman phenomenon?Innate Immun.24 ( 8 ), 466 – 479 ( 2018 ).
  • Hallahan DE Chen AY Teng M Cmelak AJ . Drug-radiation interactions in tumor blood vessels . Oncol. Williston Park N.13 ( 10 Suppl 5 ), 71 – 77 ( 1999 ).
  • Ishikawa Y Kirikae T Hirata M et al. Local skin response in mice induced by a single intradermal injection of bacterial lipopolysaccharide and lipid A . Infect. Immun.59 ( 6 ), 1954 – 1960 ( 1991 ).
  • Rothstein JL Schreiber H . Synergy between tumor necrosis factor and bacterial products causes hemorrhagic necrosis and lethal shock in normal mice . Proc. Natl Acad. Sci. USA85 ( 2 ), 607 – 611 ( 1988 ).
  • Arndt WF Schneider HA . The extension of the Shwartzman phenomenon to the mouse and some ecological determinants of the single-injection reaction . J. Exp. Med.112 , 167 – 186 ( 1960 ).
  • Zhou JS Friend DS Feldweg AM et al. Prevention of lipopolysaccharide-induced microangiopathy by gp49B1: evidence for an important role for gp49B1 expression on neutrophils . J. Exp. Med.198 ( 8 ), 1243 – 1251 ( 2003 ).
  • Mathan VI Penny GR Mathan MM Rowley D . Bacterial lipopolysaccharide-induced intestinal microvascular lesions leading to acute diarrhea . J. Clin. Invest.82 ( 5 ), 1714 – 1721 ( 1988 ).
  • Harkavy J Romanoff A . Local hemorrhagic-necrotic skin reactions in man (Shwartzman phenomenon) . J. Allergy Clin. Immunol.10 ( 6 ), 566 – 578 ( 1939 ).
  • Norman KE Williams TJ Rossi AG . Comparison of the reversed passive Arthus and local Shwartzman reactions of rabbit skin: effects of the long-acting PAF antagonist UK-74,505 . Br. J. Pharmacol.120 ( 7 ), 1286 – 1293 ( 1997 ).
  • Stetson CA . Similarities in the mechanisms determining the Arthus and Shwartzman phenomena . J. Exp. Med.94 ( 4 ), 347 – 358 ( 1951 ).
  • Batista-Duharte A Lindblad EB Oviedo-Orta E . Progress in understanding adjuvant immunotoxicity mechanisms . Toxicol. Lett.203 ( 2 ), 97 – 105 ( 2011 ).
  • Baumgartner JD Heumann D Calandra T Glauser MP . Antibodies to lipopolysaccharides after immunization of humans with the rough mutant Escherichia coli J5 . J. Infect. Dis.163 ( 4 ), 769 – 772 ( 1991 ).
  • Lee L Stetson CA . Studies on the mechanism of the Shwartznab phenomenon: accelerated cutaneous reactivity to bacterial endotoxins . J. Exp. Med.111 ( 6 ), 761 – 772 ( 1960 ).
  • Nakagawa R Naka T Tsutsui H et al. SOCS-1 participates in negative regulation of LPS responses . Immunity17 ( 5 ), 677 – 687 ( 2002 ).
  • Anwar MA Basith S Choi S . Negative regulatory approaches to the attenuation of Toll-like receptor signaling . Exp. Mol. Med.45 , e11 ( 2013 ).
  • Medvedev AE Sabroe I Hasday JD Vogel SN . Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease . J. Endotoxin. Res.12 ( 3 ), 133 – 150 ( 2006 ).
  • Fan H Cook JA . Molecular mechanisms of endotoxin tolerance . J. Endotoxin. Res.10 ( 2 ), 71 – 84 ( 2004 ).
  • Bohannon JK Hernandez A Enkhbaatar P Adams WL Sherwood ER . The immunobiology of TLR4 agonists: from endotoxin tolerance to immunoadjuvants . Shock Augusta Ga.40 ( 6 ), 451 ( 2013 ).
  • Cavaillon J-M Adib-Conquy M . Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis . Crit. Care Lond. Engl.10 ( 5 ), 233 ( 2006 ).
  • Draisma A Pickkers P Bouw MPWJM van der Hoeven JG . Development of endotoxin tolerance in humans in vivo . Crit. Care Med.37 ( 4 ), 1261 – 1267 ( 2009 ).
  • Deng H Maitra U Morris M Li L . Molecular mechanism responsible for the priming of macrophage activation . J. Biol. Chem.288 ( 6 ), 3897 – 3906 ( 2013 ).
  • Labeta MO Durieux JJ Spagnoli G Fernandez N Wijdenes J Herrmann R . CD14 and tolerance to lipopolysaccharide: biochemical and functional analysis . Immunology80 ( 3 ), 415 – 423 ( 1993 ).
  • Lin S-M Frevert CW Kajikawa O et al. Differential regulation of membrane CD14 expression and endotoxin-tolerance in alveolar macrophages . Am. J. Respir. Cell Mol. Biol.31 ( 2 ), 162 – 170 ( 2004 ).
  • Nomura F Akashi S Sakao Y et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression . J. Immunol.164 ( 7 ), 3476 – 3479 ( 2000 ).
  • Medvedev AE Lentschat A Wahl LM Golenbock DT Vogel SN . Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells . J. Immunol.169 ( 9 ), 5209 – 5216 ( 2002 ).
  • Piao W Song C Chen H et al. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling . J. Leukoc. Biol.86 ( 4 ), 863 – 875 ( 2009 ).
  • Xiong Y Medvedev AE . Induction of endotoxin tolerance in vivo inhibits activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20 . J. Leukoc. Biol.90 ( 6 ), 1141 – 1148 ( 2011 ).
  • Pocock J Gómez-Guerrero C Harendza S et al. Differential activation of NF-kappa B, AP-1, and C/EBP in endotoxin-tolerant rats: mechanisms for in vivo regulation of glomerular RANTES/CCL5 expression . J. Immunol.170 ( 12 ), 6280 – 6291 ( 2003 ).
  • Sly LM Rauh MJ Kalesnikoff J Song CH Krystal G . LPS-induced upregulation of SHIP is essential for endotoxin tolerance . Immunity21 ( 2 ), 227 – 239 ( 2004 ).
  • Foster SL Hargreaves DC Medzhitov R . Gene-specific control of inflammation by TLR-induced chromatin modifications . Nature447 ( 7147 ), 972 – 978 ( 2007 ).
  • Wolk K Döcke WD von Baehr V Volk HD Sabat R . Impaired antigen presentation by human monocytes during endotoxin tolerance . Blood96 ( 1 ), 218 – 223 ( 2000 ).
  • Szabó C Thiemermann C Wu CC Perretti M Vane JR . Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo . Proc. Natl Acad. Sci. USA91 ( 1 ), 271 – 275 ( 1994 ).
  • Cavaillon J-M Adrie C Fitting C Adib-Conquy M . Endotoxin tolerance: is there a clinical relevance?J. Endotoxin Res.9 ( 2 ), 101 – 107 ( 2003 ).
  • van ’t Veer C van den Pangaart PS van Zoelen MAD et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model . J. Immunol.179 ( 10 ), 7110 – 7120 ( 2007 ).
  • Copeland S Warren HS Lowry SF Calvano SE Remick D . Acute inflammatory response to endotoxin in mice and humans . Clin. Diagn. Lab. Immunol.12 ( 1 ), 60 – 67 ( 2005 ).
  • Warren HS Fitting C Hoff E et al. Resilience to bacterial infection: difference between species could be due to proteins in serum . J. Infect. Dis.201 ( 2 ), 223 – 232 ( 2010 ).
  • Munford RS . Murine responses to endotoxin: another dirty little secret?J. Infect. Dis.201 ( 2 ), 175 ( 2010 ).
  • Seok J Warren HS Cuenca AG et al. Genomic responses in mouse models poorly mimic human inflammatory diseases . Proc. Natl Acad. Sci. USA110 ( 9 ), 3507 – 3512 ( 2013 ).
  • Vosika GJ Barr C Gilbertson D . Phase-I study of intravenous modified lipid A . Cancer Immunol. Immunother.18 ( 2 ), 107 – 112 ( 1984 ).
  • de Bono JS Dalgleish AG Carmichael J et al. Phase I study of ONO-4007, a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide . Clin. Cancer Res.6 ( 2 ), 397 – 405 ( 2000 ).
  • Isambert N Fumoleau P Paul C et al. Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors . BMC Cancer13 , 172 ( 2013 ).
  • Vacchelli E Galluzzi L Eggermont A et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy . Oncoimmunology1 ( 6 ), 894 – 907 ( 2012 ).
  • Kiers D Koch RM Hamers L et al. Characterization of a model of systemic inflammation in humans in vivo elicited by continuous infusion of endotoxin . Sci. Rep.7 , 40149 ( 2017 ).
  • Magalhães PO Lopes AM Mazzola PG Rangel-Yagui C Penna TCV Pessoa A . Methods of endotoxin removal from biological preparations: a review . J. Pharm. Pharm. Sci.10 ( 3 ), 388 – 404 ( 2007 ).
  • Cao JJ Shen C-L . High-fat diet exacerbates bone loss in mice implanted with low-dose slow-release lipopolysaccharide pellets . FASEB J.30 ( 1_supplement ), 915.17 – 915.17 ( 2016 ).
  • Kumar A Pillai J . Chapter 13 – Implantable drug delivery systems: an overview . In : Nanostructures for the Engineering of Cells, Tissues and Organs.GrumezescuAM ( Ed. ), William Andrew Publishing , Norwich, NY, USA , 473 – 511 ( 2018 ). www.sciencedirect.com/science/article/pii/B9780128136652000132 .
  • Rajgor N Patel M Bhaskar V . Implantable drug delivery systems: an overview . Syst. Rev. Pharm.2 ( 3 ), 91 – 95 ( 2011 ).
  • McAvoy K Jones D Thakur RRS . Synthesis and characterisation of photocrosslinked poly(ethylene glycol) diacrylate implants for sustained ocular drug delivery . Pharm. Res.35 ( 2 ), 36 ( 2018 ).
  • Imasaka K Ueda H Azuma T Kawaguchi T Nagai T . Application of new silicone gel to sustained release dosage form of antitumor drug . Drug Des. Deliv.4 ( 3 ), 237 – 246 ( 1989 ).
  • Basak P Adhikari B Banerjee I Maiti TK . Sustained release of antibiotic from polyurethane coated implant materials . J. Mater. Sci. Mater. Med.20 ( Suppl 1 ), S213 – S221 ( 2009 ).
  • Mestiri M Benoit JP Hernigou P Devissaguet JP Puisieux F . Cisplatin-loaded poly (methyl methacrylate) implants: a sustained drug delivery system . J. Control. Rel.33 ( 1 ), 107 – 113 ( 1995 ).
  • Désévaux C Dubreuil P Lenaerts V . Characterization of crosslinked high amylose starch matrix implants: 1. In vitro release of ciprofloxacin . J. Control. Rel.82 ( 1 ), 83 – 93 ( 2002 ).
  • Van Kampen E Vandervelden C Fakhari A Qian J Berkland C Gehrke SH . Design of hollow hyaluronic acid cylinders for sustained intravitreal protein delivery . J. Pharm. Sci.107 ( 9 ), 2354 – 2365 ( 2018 ).
  • Saparia B Solanki A Murthy RSR . Sustained release implants of chloroquine phosphate for possible use in chemoprophylaxis of malaria . Indian J. Exp. Biol.39 ( 9 ), 902 – 905 ( 2001 ).
  • Cossé A König C Lamprecht A Wagner KG . Hot melt extrusion for sustained protein release: matrix erosion and in vitro Release of PLGA-based implants . AAPS PharmSciTech18 ( 1 ), 15 – 26 ( 2017 ).
  • Zhang K Shi X Lin X Yao C Shen L Feng Y . Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats . Drug Deliv.22 ( 3 ), 375 – 382 ( 2015 ).
  • Tirsoaga A El Hamidi A Perry MB Caroff M Novikov A . A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element . J. Lipid Res.48 ( 11 ), 2419 – 2427 ( 2007 ).
  • Li WW Grayson G Folkman J D’Amore PA . Sustained-release endotoxin. A model for inducing corneal neovascularization . Invest. Ophthalmol. Vis. Sci.32 ( 11 ), 2906 – 2911 ( 1991 ).
  • Yu L Ding J . Injectable hydrogels as unique biomedical materials . Chem. Soc. Rev.37 , 1473 – 1481 ( 2008 ).
  • Yang W-W Pierstorff E . Reservoir-based polymer drug delivery systems . J. Lab. Autom.17 ( 1 ), 50 – 58 ( 2012 ).
  • Shi H Gong C Zhang H et al. Novel vaccine adjuvant LPS-Hydrogel for truncated basic fibroblast growth factor to induce antitumor immunity . Carbohydr. Polym.89 ( 4 ), 1101 – 1109 ( 2012 ).
  • Nalawade PS Patil SJ Sonawane RD . Osmotic pump drug delivery –a novel approach . Eur. J. Pharm. Med. Res.4 ( 5 ), 266 – 276 ( 2017 ).
  • Mathur M Mishra R . A review on osmotic pump drug delivery system . Int. J. Pharm. Sci. Res.3 ( 7 ), 453 – 471 ( 2016 ).
  • Gupta KK Xu Z Castellino FJ Ploplis VA . Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4 . Biochem. Biophys. Res. Commun.477 ( 3 ), 503 – 508 ( 2016 ).
  • Bernard A Ancel D Passilly-Degrace P Landrier J-F Lagrost L Besnard P . A chronic LPS-induced low-grade inflammation fails to reproduce in lean mice the impairment of preference for oily solution found in diet-induced obese mice . BiochimieS0300-9084 ( 18 ), 30241 – 4 ( 2018 ).
  • Shaver CM Grove BS Putz ND et al. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor . Am. J. Respir. Cell Mol. Biol.53 ( 5 ), 719 – 727 ( 2015 ).
  • Yang S Zhou M Chaudry IH Wang P . The role of lipopolysaccharide in stimulating adrenomedullin production during polymicrobial sepsis . Biochim. Biophys. Acta1537 ( 2 ), 167 – 174 ( 2001 ).
  • Uchiumi D Kobayashi M Tachikawa T Hasegawa K . Subcutaneous and continuous administration of lipopolysaccharide increases serum levels of triglyceride and monocyte chemoattractant protein-1 in rats . J. Periodontal Res.39 ( 2 ), 120 – 128 ( 2004 ).
  • Shetab Boushehri MA . Nanoparticle-triggered TLR4-mediated pro-inflammatory approach in cancer immunotherapy . ( 2017 ).
  • Lamprecht A Shetab Boushehri MA . Use of nanoparticles for cancer immunotherapy . WO2018141810 (A1) , ( 2017 ).
  • Piazza M Colombo M Zanoni I et al. Uniform LPS-loaded magnetic nanoparticles for the investigation of LPS/TLR4 signaling . Angew. Chem. Int. Ed. Engl.50 ( 3 ), 622 – 626 ( 2011 ).
  • Hamidi M Azadi A Rafiei P . Hydrogel nanoparticles in drug delivery . Adv. Drug Deliv. Rev.60 , 1638 – 1649 ( 2008 ).
  • Akiyoshi K Kobayashi S Shichibe S et al. Self-assembeled hydrogel nanoparticle of cholesterol-bearing pllulan as a carrier of protein drugs: complexation and stabilization of insulin . J. Control. Rel.54 ( 3 ), 313 – 320 ( 1998 ).
  • Shimizu T Kishida T Hasegawa U et al. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy . Biochem. Biophys. Res. Commun.367 ( 2 ), 330 – 335 ( 2008 ).
  • Kitano S Kageyama S Nagata Y et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan . Clin. Cancer Res.12 ( 24 ), 7397 – 7405 ( 2006 ).
  • Kageyama S Kitano S Hirayama M et al. Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel . Cancer Sci.99 ( 3 ), 601 – 607 ( 2008 ).
  • Mi L Liu H Gao Y Miao H Ruan J . Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration . Int. J. Biol. Macromol.101 , 341 – 347 ( 2017 ).
  • Hill A Geissler S Weigandt M Mäder K . Controlled delivery of nanosuspensions from osmotic pumps: zero order and non-zero order kinetics . J. Control. Rel.158 ( 3 ), 403 – 412 ( 2012 ).
  • Suh H Shin J Kim Y-C . Microneedle patches for vaccine delivery . Clin. Exp. Vaccine Res.3 ( 1 ), 42 – 49 ( 2014 ).
  • Hong X Wei L Wu F et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine . Drug Des. Devel. Ther.7 , 945 – 952 ( 2013 ).
  • Li W Terry RN Tang J Feng MR Schwendeman SP Prausnitz MR . Rapidly separable microneedle patch for the sustained release of a contraceptive . Nat. Biomed. Eng.1 ( 2019 ).
  • Chen M-C Huang S-F Lai K-Y Ling M-H . Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination . Biomaterials.34 ( 12 ), 3077 – 3086 ( 2013 ).
  • Tsioris K Raja WK Pritchard EM Panilaitis B Kaplan DL Omenetto FG . Fabrication of silk microneedles for controlled-release drug delivery . Adv. Funct. Mater.22 ( 2 ), 330 – 335 ( 2012 ).
  • Donnelly RF Singh TRR Garland MJ et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery . Adv. Funct. Mater.22 ( 23 ), 4879 – 4890 ( 2012 ).
  • Lee SG Jeong JH Lee KM et al. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule . Int. J. Nanomed.9 , 289 – 299 ( 2014 ).
  • Niu L Chu LY Burton SA Hansen KJ Panyam J . Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response . J. Control. Rel.294 , 268 – 278 ( 2019 ).
  • Hirschberg HJHB van de Wijdeven GGP Kraan H Amorij J-P Kersten GFA . Bioneedles as alternative delivery system for hepatitis B vaccine . J. Control. Rel.147 ( 2 ), 211 – 217 ( 2010 ).
  • DeMuth PC Moon JJ Suh H Hammond PT Irvine DJ . Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery . ACS Nano6 ( 9 ), 8041 – 8051 ( 2012 ).
  • Wang N Zhen Y Jin Y et al. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS) . J. Control. Rel.246 , 12 – 29 ( 2017 ).
  • Wang T Zhen Y Ma X Wei B Li S Wang N . Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain . Colloids Surf. B Biointerfaces126 , 520 – 530 ( 2015 ).
  • Lammers T Kiessling F Ashford M Hennink W Crommelin D Storm G . Cancer nanomedicine: is targeting our target?Nat. Rev. Mater.9 ( 1 ), Article no. 16069 ( 2016 ).
  • Modi S Prakash Jain J Domb AJ Kumar N . Exploiting EPR in polymer drug conjugate delivery for tumor targeting . Curr. Pharm. Des.12 ( 36 ), 4785 – 4796 ( 2006 ).
  • Blanco E Shen H Ferrari M . Principles of nanoparticle design for overcoming biological barriers to drug delivery . Nat. Biotechnol.33 , 941 – 951 ( 2015 ).
  • Maeda H . SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy . Adv. Drug Deliv. Rev.46 ( 1-3 ), 169 – 185 ( 2001 ).
  • Zhu L Torchilin VP . Stimulus-responsive nanopreparations for tumor targeting . Integr. Biol. Quant. Biosci. Nano Macro5 ( 1 ) ( 2013 ). www.ncbi.nlm.nih.gov/pmc/articles/PMC3521849/
  • Synthesis of lipopolysaccharide–protein conjugate vaccines via the lipid a region following removal of the glycosidic phosphate residue [Internet] . ( 2003 ). https://patents.google.com/patent/WO2003070282A2/en
  • Kubler-Kielb J . Conjugation of LPS-derived oligosaccharides to proteins using oxime chemistry . Methods Mol. Biol.751 , 317 – 327 ( 2011 ).
  • Pallarola D Battaglini F . An efficient method for conjugation of a lipopolysaccharide from Salmonella enterica sv. Minnesota with probes bearing hydrazine or amino functional groups . Anal. Biochem.381 ( 1 ), 53 – 58 ( 2008 ).
  • Conlan JW Shen H Webb A Perry MB . Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen . Vaccine20 ( 29 ), 3465 – 3471 ( 2002 ).
  • Reddy ST Swartz MA Hubbell JA . Targeting dendritic cells with biomaterials: developing the next generation of vaccines . Trends Immunol.27 ( 12 ), 573 – 579 ( 2006 ).
  • Demento SL Eisenbarth SC Foellmer HG et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy . Vaccine27 ( 23 ), 3013 – 3021 ( 2009 ).
  • Demento SL Siefert AL Bandyopadhyay A Sharp FA Fahmy TM . Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines . Trends Biotechnol.29 ( 6 ), 294 – 306 ( 2011 ).
  • Jain V Sahu R Misra-Bhattacharya S Vyas SP Kohli D . Enhancement of T-helper type I immune responses against hepatitis B surface antigen by LPS derivatives adjuvanted liposomes delivery system . J. Drug Target.16 ( 9 ), 706 – 715 ( 2008 ).
  • Franz J Pokorová D Hampl J Dittrich M . Adjuvant efficacy of gelatin particles and microparticles . Int. J. Pharm.168 ( 2 ), 153 – 161 ( 1998 ).
  • Thomas SN Vokali E Lund AW Hubbell JA Swartz MA . Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response . Biomaterials35 ( 2 ), 814 – 824 ( 2014 ).
  • Caminschi I Maraskovsky E Heath WR . Targeting dendritic cells in vivo for cancer therapy . Front. Immunol.3 ( 2012 ). www.ncbi.nlm.nih.gov/pmc/articles/PMC3342351/
  • Torres Andón F Alonso MJ . Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells . J. Drug Target.23 ( 7-8 ), 656 – 671 ( 2015 ).
  • Cortez-Retamozo V Etzrodt M Newton A et al. Origins of tumor-associated macrophages and neutrophils . Proc. Natl Acad. Sci. USA109 ( 7 ), 2491 – 2496 ( 2012 ).
  • Roy A Singh MS Upadhyay P Bhaskar S . Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model . Int. J. Pharm.445 ( 1-2 ), 171 – 180 ( 2013 ).
  • Jang B Xu L Moorthy MS et al. Lipopolysaccharide-coated CuS nanoparticles promoted anti-cancer and anti-metastatic effect by immuno-photothermal therapy . Oncotarget8 ( 62 ), 105584 – 105595 ( 2017 ).
  • Watanabe S Kumazawa Y Inoue J . Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14 . PloS ONE8 ( 4 ), e60078 ( 2013 ).
  • Watanabe S Inoue J . Intracellular delivery of lipopolysaccharide induces effective Th1-immune responses independent of IL-12 . PloS ONE8 ( 7 ), e68671 ( 2013 ).
  • Dijkstra J Larrick JW Ryan JL Szoka FC . Incorporation of LPS in liposomes diminishes its ability to induce tumoricidal activity and tumor necrosis factor secretion in murine macrophages . J. Leukoc. Biol.43 ( 5 ), 436 – 444 ( 1988 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.