132
Views
0
CrossRef citations to date
0
Altmetric
Review

Macrophages As Delivery Vehicles for Anticancer Agents

&
Pages 189-201 | Received 31 Jan 2019, Accepted 27 Feb 2019, Published online: 26 Mar 2019

References

  • Danhier F . To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?J. Control. Rel.244 , 108 – 121 ( 2016 ).
  • Basel MT Shrestha TB Bossmann SH et al. Cells as delivery vehicles for cancer therapeutics . Ther. Deliv.5 ( 5 ), 555 – 567 ( 2014 ).
  • Matsumura Y Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res.12 ( 1 ), 6387 – 6392 ( 1986 ).
  • Fang J Nakamura H Maeda H . The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved and limitations and augmentation of the effect . Adv. Drug Deliv. Rev.63 ( 3 ), 136 – 151 ( 2011 ).
  • Jain RK Stylianopoulos T . Delivering nanomedicine to solid tumours . Nat. Rev. Clin. Oncol.7 ( 11 ), 653 – 664 ( 2010 ).
  • Schleich N Danhier F Preat V . Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation . J. Control. Rel.198 , 35 – 54 ( 2015 ).
  • Nichols JW Bae YH . EPR: evidence and fallacy . J. Control. Rel.190 , 451 – 464 ( 2014 ).
  • Flynn T Wei C . The pathway to commercialization for nanomedicine . Nanomedicine1 ( 1 ), 47 – 51 ( 2005 ).
  • Lammers T Kiessling F Hennink WE et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress . J. Control. Rel.161 ( 2 ), 175 – 187 ( 2012 ).
  • Gillies RJ Schornack PA Secomb TW et al. Causes and effects of heterogeneous perfusion in tumors . Neoplasia1 ( 3 ), 197 – 207 ( 1999 ).
  • Michiels C Tellier C Feron O . Cycling hypoxia: a key feature of the tumor microenvironment . Biochim. Biophys. Acta1866 ( 1 ), 76 – 86 ( 2016 ).
  • Maeda H . Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity . Adv. Drug Deliv. Rev.91 , 3 – 6 ( 2015 ).
  • Miao L Huang L . Exploring the tumor microenvironment with nanoparticles . Cancer Treat. Res.166 , 193 – 226 ( 2015 ).
  • Glentis A Gurchernkov V Matic VD . Assembly, heterogeneity, and breaching of the basement membranes . Cell Adhes. Migr.8 ( 3 ), 236 – 245 ( 2014 ).
  • Kalluri R . Basement membranes: structure, assembly and role in tumour angiogenesis . Nat. Rev. Cancer3 ( 6 ), 422 – 433 ( 2003 ).
  • Jain RK . Transport of molecules in the tumor interstitium: a review . Cancer Res.47 ( 12 ), 3039 – 3051 ( 1987 ).
  • Hao N-B Lu M-H Fan Y-H et al. Macrophages in tumor microenvironments and the progression of tumors . Clin. Dev. Immunol.2012 , 948098 ( 2012 ).
  • Mosser DM Edwards JP . Exploring the full spectrum of macrophage activation . Nat. Rev. Immunol.8 ( 12 ), 958 – 969 ( 2008 ).
  • Gordon S Taylor PR . Monocyte and macrophage heterogeneity . Nat. Rev. Immunol.5 ( 12 ), 953 – 964 ( 2005 ).
  • Lawrence T Natoli G . Transcriptional regulation of macrophage polarization: enabling diversity with identity . Nat. Rev. Immunol.11 ( 11 ), 750 – 761 ( 2011 ).
  • Sica A Larghi P Mancino A et al. Macrophage polarization in tumour progression . Semin. Cancer Biol.18 ( 5 ), 349 – 355 ( 2008 ).
  • Lewis CE Pollard JW . Distinct role of macrophages in different tumor microenvironments . Cancer Res.66 ( 2 ), 605 – 612 ( 2006 ).
  • Nardin A Abastado JP . Macrophages and cancer . Front. Biosci.13 ( 9 ), 3494 – 3505 ( 2008 ).
  • Fleige G Nolte C Synowitz M et al. Magnetic labeling of activated microglia in experimental gliomas . Neoplasia3 , 489 – 499 ( 2001 ).
  • Graves DT Jiang YL Williamson MJ et al. Identification of monocyte chemotactic activity produced by malignant cells . Science245 ( 4925 ), 1490 – 1493 ( 1989 ).
  • Coussens LM Werb Z . Inflammation and cancer . Nature420 ( 6917 ), 860 – 867 ( 2002 ).
  • Solinas G Germano G Mantovani A et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation . J. Leukoc. Biol.86 ( 5 ), 1065 – 1073 ( 2009 ).
  • Murdoch C Giannoudis A Lewis CE . Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues . Blood104 ( 8 ), 2224 – 2234 ( 2004 ).
  • Balkwill F . Cancer and the chemokine network . Nat. Rev. Cancer4 ( 7 ), 540 – 550 ( 2004 ).
  • Allavena P Sica A Solinas G et al. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages . Crit. Rev. Oncol. Hematol.66 ( 1 ), 1 – 9 ( 2008 ).
  • Murdoch C Muthana M Lewis C . Hypoxia regulates macrophage functions in inflammation . J. Immunol.175 , 6257 – 6263 ( 2005 ).
  • Combes F McCafferty S Meyer E et al. Off-target and tumor-specific accumulation of monocytes, macrophages and myeloid-derived suppressor cells after systemic injection . Neoplasia20 ( 8 ), 848 – 856 ( 2018 ).
  • Pastorino S Massazza S Cilli M et al. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer . Gene Ther.8 , 431 – 441 ( 2001 ).
  • Choi M-R Stanton-Maxey KJ Stanley JK et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors . Nano Lett.7 ( 12 ), 3759 – 3765 ( 2007 ).
  • Baek SK Makkouk AR Krasieva T et al. Photothermal treatment of glioma: an in vitro study macrophage-mediated delivery of gold nanoshells . J. Neurooncol.104 ( 2 ), 439 – 448 ( 2011 ).
  • Yang TD Choi W Yoon TH et al. Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells . J. Biomed. Opt.17 ( 12 ), 128003–1-8 ( 2012 ).
  • Kah JC Wong KY Neoh KG et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study . J. Drug Target.17 , 181 – 193 ( 2009 ).
  • Choi M-R Bardham R Stanton-Maxey KJ et al. Delivery of nanoparticles to breast metastases of breast cancer using a cellular Trojan horse . Cancer Nano3 , 47 – 54 ( 2012 ).
  • Madsen SJ Christie C Hong SJ et al. Nanoparticle-loaded macrophage mediated photothermal therapy: potential for glioma treatment . Lasers Med. Sci.30 ( 4 ), 1357 – 1365 ( 2015 ).
  • Yang TD Choi W Yoon TH et al. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells . Biomed. Opt. Express7 ( 1 ), 185 – 193 ( 2015 ).
  • Li Z Huang H Tang S et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy . Biomaterials74 , 144 – 154 ( 2016 ).
  • Trinidad A Hong SJ Peng Q et al. Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma . Lasers Surg. Med.46 ( 4 ), 310 – 318 ( 2014 ).
  • Christensen T Wahl A Smedshammer L . Effects of haematoporphyrin derivative and light combination with hyperthermia on cells in culture . Br. J. Cancer50 , 85 – 89 ( 1985 ).
  • Prinsze C Penning LC Dubbelman TM et al. Interaction of photodynamic treatment and either hyperthermia or ionizing radiation and of ionizing radiation and hyperthermia with respect to cell killing of L929 fibroblasts, Chinese hamster ovary cells and T24 human bladder carcinoma cells . Cancer Res.52 , 117 – 120 ( 1992 ).
  • Rasch MH Tijssen K VanSteveninck J et al. Synergistic interaction of photodynamic treatment with the sensitizer aluminum phthalocyanine and hyperthermia on loss of clonogenicity of CHO cells . Photochem. Photobiol.64 , 586 – 593 ( 1996 ).
  • Basel MT Balivada S Wang H et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model . Int. J. Nanomed.7 , 297 – 306 ( 2012 ).
  • Gorantla S Dou H Boska M et al. Quantitative magnetic resonance and SPECT imaging for macrophage tissue migration and nanoformulated drug delivery . J. Leukoc. Biol.80 , 1165 – 1174 ( 2006 ).
  • Beduneau A Ma Z Grotepas CB et al. Facilitated monocyte-macrophage uptake and tissue distribution of superparamagnetic iron-oxide nanoparticles . PLoS ONE4 ( 2 ), er4343 ( 2009 ).
  • Choi J Kim H-Y Ju EJ et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors . Biomaterials33 , 4195 – 4203 ( 2012 ).
  • Valable S Barbier EL Bernaudin M et al. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma . Neuroimage40 ( 2 ), 973 – 983 ( 2008 ).
  • Madsen SJ Gach HM Hong SJ et al. Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption . Lasers Surg. Med.45 ( 8 ), 524 – 532 ( 2013 ).
  • Tong H-I Kang W Davy PMC et al. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue – evaluations on monocyte-based delivery system for the central nervous system . PLoS ONE11 ( 4 ), e0154022 ( 2016 ).
  • Ikehara Y Niwa T Biao L et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle . Cancer Res.66 ( 17 ), 8740 – 8748 ( 2006 ).
  • Huang W-C Chiang W-H Cheng Y-H et al. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia . Biomaterials71 , 71 – 83 ( 2015 ).
  • Fu J Wang D Mei D et al. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer . J. Control. Rel.204 , 11 – 19 ( 2015 ).
  • Madsen SJ Shih E-C Peng Q et al. Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study . J. Biomed. Opt.21 ( 1 ), 018004–1-6 ( 2016 ).
  • Nair RK Christie C Ju D et al. Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI) . Lasers Med. Sci.33 , 1747 – 1755 ( 2018 ).
  • Sahay G Alakhova DY Kabanov AV . Endocytosis of nanomedicines . J. Contol. Rel.145 , 182 – 195 ( 2010 ).
  • Kim H Lee D Kim J et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide . ACS Nano.7 , 6735 – 6746 ( 2013 ).
  • Ma D . Enhancing endosomal escape for nanoparticle mediated siRNA delivery . Nanoscale6 , 6415 – 6425 ( 2014 ).
  • Kampinga HH Dikomey E . Hyperthermic radiosensitization: mode of action and clinical relevance . Int. J. Radiat. Biol.77 , 399 – 408 ( 2001 ).
  • Berg K Dietze A Kaalhus O et al. Site-specific drug delivery by photochemical internalization enhances the antitumor effects of bleomycin . Clin. Cancer Res.11 ( 23 ), 8476 – 8485 ( 2005 ).
  • Norum OJ Bruland OS Gorunova L et al. Photochemical internalization of bleomycin before external-beam radiotherapy improves locoregional control in a human sarcoma model . Int. J. Radiat. Oncol. Biol. Phys.75 ( 3 ), 878 – 885 ( 2009 ).
  • Hirschberg H Zhang MJ Gach HM et al. Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin . J. Neurooncol.95 ( 3 ), 317 – 329 ( 2009 ).
  • Mathews MS Blickenstaff JW Shih E-C et al. Photochemical internalization of bleomycin for glioma treatment . J. Biomed. Opt.17 ( 5 ), 058001 ( 2012 ).
  • Sultan AA Jerjes W Berg K et al. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalization of bleomycin in patients with solid malignancies: a Phase I, dose-escalation, first-in-man trial . Lancet Oncol.17 ( 9 ), 1217 – 1229 ( 2016 ).
  • Shin D Christie C Ju D et al. Photochemical Internalization enhanced macrophage delivered chemotherapy . Photodiagnosis Photodyn. Ther.21 , 156 – 162 ( 2018 ).
  • Satoh T Saika T Ebara S et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model . Cancer Res.63 , 7853 – 7860 ( 2003 ).
  • Muthana M Giannoudis A Scott SD et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors . Cancer Res.71 ( 5 ), 1805 – 1815 ( 2011 ).
  • Basel MT Balivada S Shrestha TB et al. A cell-delivered and -activated SN38-dextran prodrug increases survival in a murine disseminated pancreatic cancer model . Small8 ( 6 ), 913 – 920 ( 2012 ).
  • Wang H Shrestha TB Basel MT et al. Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocyes/macrophages . Beilstein J. Nanotechnol.3 , 444 – 455 ( 2012 ).
  • Moolton F . Tumor chemosensitivity conferred by inserted herpes thymidine-kinase genes: paradigm for a prospective cancer-control strategy . Cancer Res.46 , 5276 – 5281 ( 1986 ).
  • Culver KW Ram Z Wallbridge S et al. In vivo gene transfer with retroviral-vector-producer cells for treatment of experimental brain tumors . Science256 , 1550 – 1552 ( 1992 ).
  • Dixit K Kumthekar P . Gene delivery in neuro-oncology . Curr. Oncol. Rep.19 ( 11 ), 69 ( 2017 ).
  • Zhang J Kale V Chen M . Gene-directed enzyme prodrug therapy . AAPS J.17 ( 1 ), 102 – 110 ( 2015 ).
  • Trinh QT Austin EA Murray DM et al. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line . Cancer Res.55 ( 21 ), 4808 – 4812 ( 1995 ).
  • Adachi Y Tamiya T Ichikawa T et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine . Hum. Gene Ther.11 ( 1 ), 77 – 89 ( 2000 ).
  • Mullen CA Coale MM Lowe R et al. Tumors expressing the cytosine-deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild-type tumor . Cancer Res.54 , 1503 – 1506 ( 1994 ).
  • Ostertag D Amundson KK Lopez Espinoza F et al. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector . Neuro. Oncol.14 , 145 – 159 ( 2012 ).
  • Wang F Zamora G Sun CH et al. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene . J. Neurooncol.118 ( 1 ), 29 – 37 ( 2014 ).
  • Zamora G Wang F Sun CH et al. Photochemical internalization mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier . J. Biomed. Opt.19 ( 10 ), 105009 ( 2014 ).
  • Christie CE Zamora G Kwon YJ et al. Macrophage mediated PCI enhanced gene-directed enzyme pro-drug therapy . Proceedings SPIE, Optical Techniques in Neursurgery, Neurophotonics, and Optogenetics II.9305 ( 93050C ), 1 – 6 ( 2015 ).
  • Dachs GU Hunt MA Syddall S et al. Bystander or no bystander for gene directed enzyme prodrug therapy . Molecules14 ( 11 ), 4517 – 4545 ( 2009 ).
  • Christie CE Nair R Pomeroy A et al. Photodynamic therapy enhances the efficacy of gene-directed enzyme prodrug therapy . Photodiagnosis Photodyn. Ther.18 , 140 – 148 ( 2017 ).
  • Ardon H Van Gool S Lopes IS et al. Integration of autologous dendritic cell based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study . J. Neurooncol.99 , 261 – 272 ( 2010 ).
  • Yu JS Liu G Ying H et al. Vaccination with tumor lysate pulsed dendritic cells elicits antigen specific, cytotoxic T cells in patients with malignant glioma . Cancer Res.64 , 4973 – 4979 ( 2004 ).
  • Yamanaka R Homma J Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial . Clin. Cancer Res.11 , 4160 – 4167 ( 2005 ).
  • Constantino J Gomes C Falcao A et al. Dendritic cell-based immunotherapy: a basic review and recent advances . Immunol. Res.65 ( 4 ), 798 – 810 ( 2017 ).
  • Pan RY Chung WH Chu MT et al. Recent development and clinical application of cancer vaccine: targeting neoantigens . J. Immunol. Res.2018 , 4325874 ( 2018 )
  • Hume DA . Macrophages as APC and the dendritic cell myth . J. Immunol.181 , 5829 – 5835 ( 2008 ).
  • Madsen SJ Christie C Huynh K et al. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats . J. Biomed. Opt.23 ( 2 ), 028001 ( 2018 ).
  • Garg AD Agostinis P . Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses . Immunol. Rev.280 , 126 – 148 ( 2017 ).
  • Garg AD Nowis D Golab J et al. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity . Apoptosis15 , 1050 – 1071 ( 2010 ).
  • Hirschberg H Berg K Peng Q . Photodynamic therapy mediated immune therapy of brain tumors . Neuroimmunol. Neuroinflammation5 , 27 ( 2018 ).
  • Hirschberg H Madsen SJ . Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review . Ther. Deliv.8 ( 5 ), 331 – 342 ( 2017 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.