596
Views
0
CrossRef citations to date
0
Altmetric
Review

Solid Dispersion Technology As a Strategy to Improve the Bioavailability of Poorly Soluble Drugs

, , &
Pages 363-382 | Received 07 Mar 2019, Accepted 30 Apr 2019, Published online: 16 May 2019

References

  • Gribbon P , AndreasS. High-throughput drug discovery: what can we expect from HTS?Drug Discov. Today1(10), 17–22 (2005).
  • Lipinski CA , LombardoF , DominyBW , FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.64, 4–17 (2012).
  • Ku MS . Use of the biopharmaceutical classification system in early drug development. AAPS J.10(1), 208–212 (2008).
  • Savjani KT , GajjarAK , SavjaniJK. Drug solubility: importance and enhancement techniques. ISRN Pharm.2012, 1–10 (2012).
  • Sugano K , OkazakiA , SugimotoS , TavornvipasS , OmuraA. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet.22(4), 225–254 (2007).
  • Amidon GL , LennernäsH , ShahVP , CrisonJR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res.12(3), 413–420 (1995).
  • Yu LX , AmidonGL , PolliJEet al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res.19(7), 921–925 (2002).
  • Stegemann S , LeveillerF , FranchiD , DeJong H , LindenH. When poor solubility becomes an issue: from early stage to proof of concept. Eur. J. Pharm. Sci.31(5), 249–261 (2007).
  • Bellantone RA . Fundamentals of amorphous systems: thermodynamic aspects. In: Amorphous Solid Dispersions. Advances inDelivery Science and Technology. ShahN, SandhuH, ChoiD, ChokshiH, MalickA ( Eds). Springer, NY, USA, 3–34 (2014).
  • Shah N , SandhuH , ChoiDS , ChokshiH , MalickAW. Amorphous solid dispersions: Theory and Practice. Springer, NY, USA (2014).
  • Williams III RO , WattsAB , MillerDA. Formulating Poorly Water Soluble Drugs.Springer, NY, USA (2012).
  • Rodriguez-Aller M , GuillarmeD , VeutheyJ-L , GurnyR. Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Tech.30, 342–351 (2015).
  • Kawabata Y , WadaK , NakataniM , YamadaS , OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm.420(1), 1–10 (2011).
  • Vemula VR , LagishettyV , LingalaS. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res.5(1), 41–51 (2010).
  • Singh A , WorkuZA , VanDen Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv.8(10), 1361–1378 (2011).
  • Douroumis D , FahrA. Drug Delivery Strategies for Poorly Water-Soluble Drugs. Wiley Online Library, NY, USA (2013).
  • Van Duong T , VanDen Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin. Drug Deliv.13(12), 1681–1694 (2016).
  • Sekiguchi K , ObiN. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull.9(11), 866–872 (1961).
  • Chiou WL , RiegelmanS. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci.60(9), 1281–1302 (1971).
  • Newman A , KnippG , ZografiG. Assessing the performance of amorphous solid dispersions. J. Pharm. Sci.101(4), 1355–1377 (2012).
  • Prasad D , JainA , GaradS. Oral delivery of poorly soluble drugs. In: Poorly Soluble Drugs. WebsterGK, BellRG, JdJ ( Eds). Taylor & Francis Group, NY, USA, 149–210 (2016).
  • Serajuddin A . Solid dispersion of poorly water‐soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci.88(10), 1058–1066 (1999).
  • Leuner C , DressmanJ. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm.50(1), 47–60 (2000).
  • Vaka S , BommanaM , DesaiD , DjordjevicJ , PhuapraditW , ShahN. Excipients for amorphous solid dispersions. In: Amorphous Solid Dispersions. Advances in Delivery Science and Technology. ShahN, SandhuH, ChoiD, ChokshiH, MalickA ( Eds). Springer, NY, USA, 123–161 (2014).
  • Allen L , AnselHC. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems.Lippincott Williams & Wilkins, MD, USA (2013).
  • Zografi G , NewmanA. Interrelationships between structure and the properties of amorphous solids of pharmaceutical interest. J. Pharm. Sci.106(1), 5–27 (2017).
  • Pudipeddi M , SerajuddinAT , MufsonD. Integrated drug product development – from lead candidate selection to life-cycle management. In: The Process of New Drug Discovery and Development.SmithCG, O'DonnellJT ( Eds). CRC Press, FL, USA, 33–72 (2006).
  • Vasconcelos T , SarmentoB , CostaP. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today12(23), 1068–1075 (2007).
  • Levy G . Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am. J. Pharm. Sci. Support. Public Health135, 78–92 (1963).
  • Goldberg AH , GibaldiM , KanigJL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I: Theoretical considerations and discussion of the literature. J. Pharm. Sci.54(8), 1145–1148 (1965).
  • Goldberg AH , GibaldiM , KanigJL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: Experimental evaluation of a eutectic mixture: urea‐acetaminophen system. J. Pharm. Sci.55(5), 482–487 (1966).
  • Goldberg AH , GibaldiM , KanigJL , MayersohnM. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol urea system. J. Pharm. Sci.55(6), 581–583 (1966).
  • Goldberg A , GibaldiM , KanigJ. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: Experimental evaluation of griseofulvin—succinic acid solid solution. J. Pharm. Sci.55(5), 487–492 (1966).
  • Mishra DK , DhoteV , BhargavaA , JainDK , MishraPK. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug Deliv. Transl. Res.5(6), 552–565 (2015).
  • Mohammadi G , HematiV , NikbakhtM-Ret al. In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. Powder Technol.257, 168–174 (2014).
  • Chiou WL , RiegelmanS. Preparation and dissolution characteristics of several fast‐release solid dispersions of griseofulvin. J. Pharm. Sci.58(12), 1505–1510 (1969).
  • Simonelli A , MehtaS , HiguchiW. Dissolution rates of high energy polyvinylpyrrolidone (PVP)‐sulfathiazole coprecipitates. J. Pharm. Sci.58(5), 538–549 (1969).
  • Van Den Mooter G . The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol.9(2), e79–e85 (2012).
  • Van Drooge D , HinrichsW , VisserM , FrijlinkH. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm.310(1), 220–229 (2006).
  • Qi S , BeltonP , NollenbergerK , ClaydenN , ReadingM , CraigDQ. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm. Res.27(9), 1869–1883 (2010).
  • Vasanthavada M , TongW-Q , JoshiY , KislaliogluMS. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm. Res.21(9), 1598–1606 (2004).
  • Konno H , HandaT , AlonzoDE , TaylorLS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm.70(2), 493–499 (2008).
  • Marsac PJ , LiT , TaylorLS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res.26(1), 139 (2009).
  • Rumondor AC , IvanisevicI , BatesS , AlonzoDE , TaylorLS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm. Res.26(11), 2523–2534 (2009).
  • Sun Y , TaoJ , ZhangGG , YuL. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J. Pharm. Sci.99(9), 4023–4031 (2010).
  • Lin D , HuangY. A thermal analysis method to predict the complete phase diagram of drug–polymer solid dispersions. Int. J. Pharm.399(1-2), 109–115 (2010).
  • Qian F , HuangJ , ZhuQet al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int. J. Pharm. 395(1-2), 232–235 (2010).
  • Zhao Y , InbarP , ChokshiHP , MalickAW , ChoiDS. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory–Huggins theory. J. Pharm. Sci.100(8), 3196–3207 (2011).
  • Hallouard F , MehenniL , Lahiani-SkibaM , AnouarY , SkibaM. Solid dispersions for oral administration: an overview of the methods for their preparation. Curr. Pharm. Des.22(32), 4942–4958 (2016).
  • Kim K-T , LeeJ-Y , LeeM-Y , SongC-K , ChoiJ-H , KimD-D. Solid dispersions as a drug delivery system. J. Pharm. Investig.41(3), 125–142 (2011).
  • Vo CL-N , ParkC , LeeB-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm.85(3), 799–813 (2013).
  • Singh N , MkS. Solid dispersion-a novel approach for enhancement of bioavailability of poorly soluble drugs in oral drug delivery system. Glob. J. Pharmaceu. Sci.3(2), 17 (2017).
  • Suzuki H , YakushijiK , MatsunagaSet al. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J. Pharm. Sci.107(1), 446–452 (2018).
  • Apiwongngam J , LimwikrantW , JintapattanakitA , JaturanpinyoM. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J. Drug Deliv. Sci. Technol.47, 417–426 (2018).
  • Figueirêdo CBM , NadvornyD , VieiraACQDMet al. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. Eur. J. Pharm. Sci.119, 208–218 (2018).
  • Dannenfelser RM , HeH , JoshiY , BatemanS , SerajuddinAT. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol–polysorbate 80 solid dispersion carrier system. J. Pharm. Sci.93(5), 1165–1175 (2004).
  • Ghebremeskel AN , VemavarapuC , LodayaM. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm. Res.23(8), 1928–1936 (2006).
  • Pouton CW . Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci.29(3-4), 278–287 (2006).
  • Saffoon N , UddinR , HudaNH , SutradharKB. Enhancement of oral bioavailability and solid dispersion: a review. J. Appl. Pharm. Sci.1(7), 13–20 (2011).
  • Kapoor B , KaurR , KourS , BehlH , KourS. Solid dispersion: an evolutionary approach for solubility enhancement of poorly water soluble drugs. Int. J. Recent Adv. Pharm. Res.2, 1–16 (2012).
  • Tambe A , PanditaN. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. J. Drug Deliv. Sci. Technol.44, 172–180 (2018).
  • Khatri P , ShahMK , PatelN , JainS , VoraN , LinS. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J. Drug Deliv. Sci. Technol.45, 110–123 (2018).
  • Jiménez De Los Santos CJ , Pérez-MartínezJI , Gómez-PantojaME , MoyanoJR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J. Drug Deliv. Sci. Technol.42, 261–272 (2017).
  • Tran TT-D , TranPH-L , LimJ , ParkJB , ChoiS-K , LeeB-J. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther. Deliv.1(1), 51–62 (2010).
  • Guo S , WangG , WuT , BaiF , XuJ , ZhangX. Solid dispersion of berberine hydrochloride and Eudragit® S100: formulation, physicochemical characterization and cytotoxicity evaluation. J. Drug Deliv. Sci. Technol.40, 21–27 (2017).
  • Shamma RN , BashaM. Soluplus®: A novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol.237, 406–414 (2013).
  • Craig DQ . The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm.231(2), 131–144 (2002).
  • Noyes AA , WhitneyWR. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc.19(12), 930–934 (1897).
  • Nernst W . Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z. Phys. Chem.47(1), 52–55 (1904).
  • Higuchi W , MirN , DesaiS. Dissolution rates of polyphase mixtures. J. Pharm. Sci.54(10), 1405–1410 (1965).
  • Fernández-Colino A , BermudezJ , AriasF , QuinterosD , GonzoE. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl.61, 286–292 (2016).
  • Romero AI , VillegasM , CidAG , ParentisML , GonzoEE , BermúdezJM. Validation of kinetic modeling of progesterone release from polymeric membranes. Asian J. Pharm. Sci.31(1), 54–62 (2017).
  • Simonazzi A , CidAG , ParedesAJet al. Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther. Deliv.9(9), 623–638 (2018).
  • Simonazzi A , DaviesC , CidAG , GonzoE , ParadaL , BermúdezJM. Preparation and characterization of Poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J. Pharm. Sci.9(9), 623–638 (2018).
  • Hurter P , ThomasH , NadigD , Embiata-SmithD , PaoneA. Implementing continuous manufacturing to streamline and accelerate drug development. AAPS Newsmagazine16, 15–19 (2013).
  • Schaber SD , GerogiorgisDI , RamachandranR , EvansJMB , BartonPI , TroutBL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind. Eng. Chem. Res.50(17), 10083–10092 (2011).
  • Bley H , FussneggerB , BodmeierR. Characterization and stability of solid dispersions based on PEG/polymer blends. Int. J. Pharm.390(2), 165–173 (2010).
  • Li F-Q , HuJ-H , DengJ-X , SuH , XuS , LiuJ-Y. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm.324(2), 152–157 (2006).
  • Yao W-W , BaiT-C , SunJ-P , ZhuC-W , HuJ , ZhangH-L. Thermodynamic properties for the system of silybin and poly (ethylene glycol) 6000. Thermochim. Acta437(1-2), 17–20 (2005).
  • Timko RJ , LordiNG. Thermal characterization of citric acid solid dispersions with benzoic acid and phenobarbital. J. Pharm. Sci.68(5), 601–605 (1979).
  • Emås M , NyqvistH. Methods of studying aging and stabilization of spray-congealed solid dispersions with carnauba wax. 1. Microcalorimetric investigation. Int. J. Pharm.197(1), 117–127 (2000).
  • Hurley D , PotterCB , WalkerGM , HigginbothamCL. Investigation of ethylene oxide-co-propylene oxide for dissolution enhancement of hot-melt extruded solid dispersions. J. Pharm. Sci.doi:https://doi.org/10.1016/j.xphs.2018.01.016 (2018). (Epub ahead of print).
  • Breitenbach J . Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm.54(2), 107–117 (2002).
  • Seo A , HolmP , KristensenHG , SchæferT. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. Int. J. Pharm.259(1–2), 161–171 (2003).
  • Crowley MM , ZhangF , RepkaMAet al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm.33(9), 909–926 (2007).
  • Follonier N , DoelkerE , ColeET. Various ways of modulating the release of diltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials. J. Control. Rel.36(3), 243–250 (1995).
  • Andrews GP , JonesDS , DiakOA , MccoyCP , WattsAB , McginityJW. The manufacture and characterisation of hot-melt extruded enteric tablets. Eur. J. Pharm. Biopharm.69(1), 264–273 (2008).
  • Doelker E . Cellulose derivatives. In: Biopolymers I. Advances in Polymer Science. LangerRS, PeppasNA ( Eds). Springer, Heidelberg, Berlin, 199–265 (1993).
  • Todd DB . Introduction to compounding. In: Plastics Compounding, Equipment and Processing.ToddDB ( Ed.). Hanser Gardner Publications, OH, USA (1998).
  • Gurunath S , KumarSP , BasavarajNK , PatilPA. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. J. Pharm. Res.6(4), 476–480 (2013).
  • Desai J , AlexanderK , RigaA. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm.308(1), 115–123 (2006).
  • Yoshihashi Y , IijimaH , YonemochiE , TeradaK. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal. Calorim.85(3), 689–692 (2006).
  • Sammour OA , HammadMA , MegrabNA , ZidanAS. Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion. AAPS PharmSciTech.7(2), E167–E175 (2006).
  • Huo T , TaoC , ZhangMet al. Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. Eur. J. Pharm. Sci.114, 74–83 (2018).
  • Adeli E . The use of spray freeze drying for dissolution and oral bioavailability improvement of azithromycin. Powder Technol.319, 323–331 (2017).
  • Mann AKP , SchenckL , KoynovAet al. Producing amorphous solid dispersions via co-precipitation and spray drying: impact to physicochemical and biopharmaceutical properties. J. Pharm. Sci.107(1), 183–191 (2018).
  • Overhoff KA , MorenoA , MillerDA , JohnstonKP , WilliamsRO. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int. J. Pharm.336(1), 122–132 (2007).
  • Yang G , ZhaoY , FengN , ZhangY , LiuY , DangB. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J. Pharm. Sci.10(3), 194–202 (2015).
  • Paudel A , WorkuZA , MeeusJ , GunsS , VanDen Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm.453(1), 253–284 (2013).
  • Bikiaris DN . Solid dispersions, Part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv.8(11), 1501–1519 (2011).
  • Abuzar SM , HyunS-M , KimJ-Het al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int. J. Pharm.538(1), 1–13 (2018).
  • Momenkiaei F , RaofieF. Preparation of Curcuma Longa L. extract nanoparticles using supercritical solution expansion. J. Pharm. Sci.108(4), 1581–1589 (2019).
  • Wu K , LiJ , WangW , WinsteadDA. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J. Pharm. Sci.98(7), 2422–2431 (2009).
  • Muhrer G , MeierU , FusaroF , AlbanoS , MazzottiM. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug–polymer solid dispersions. Int. J. Pharm.308(1), 69–83 (2006).
  • Pestieau A , KrierF , LebrunP , BrouwersA , StreelB , EvrardB. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int. J. Pharm.485(1), 295–305 (2015).
  • Juppo AM , BoissierC , KhooC. Evaluation of solid dispersion particles prepared with SEDS. Int. J. Pharm.250(2), 385–401 (2003).
  • Varshosaz J , HassanzadehF , MahmoudzadehM , SadeghiA. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol.189(1), 97–102 (2009).
  • Pathak P , MezianiMJ , DesaiT , SunY-P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc.126(35), 10842–10843 (2004).
  • Reverchon E , DeMarco I , DellaPorta G. Rifampicin microparticles production by supercritical antisolvent precipitation. Int. J. Pharm.243(1-2), 83–91 (2002).
  • Lee S , NamK , KimMSet al. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Arch. Pharm. Res.28(7), 866–874 (2005).
  • Kalogiannis CG , PavlidouE , PanayiotouCG. Production of amoxicillin microparticles by supercritical antisolvent precipitation. Ind. Eng. Chem. Res.44(24), 9339–9346 (2005).
  • Crawford DE . Extrusion–back to the future: using an established technique to reform automated chemical synthesis. Beilstein J. Org. Chem.13(1), 65–75 (2017).
  • Chen G-L , HaoW-H. Factors affecting zero-order release kinetics of porous gelatin capsules. Drug Dev. Ind. Pharm.24(6), 557–562 (1998).
  • Johnson DM , TaylorWF. Degradation of fenprostalene in polyethylene glycol 400 solution. J. Pharm. Sci.73(10), 1414–1417 (1984).
  • Guillaume F , Guyot-HermannA , DuclosRet al. Elaboration and physical study of an oxodipine solid dispersion in order to formulate tablets. Drug Dev. Ind. Pharm.18(8), 811–827 (1992).
  • Suzuki H , SunadaH. Some factors influencing the dissolution of solid dispersions with nicotinamide and hydroxypropylmethylcellulose as combined carriers. Chem. Pharm. Bull.46(6), 1015–1020 (1998).
  • Johari G , KimS , ShankerRM. Dielectric studies of molecular motions in amorphous solid and ultraviscous acetaminophen. J. Pharm. Sci.94(10), 2207–2223 (2005).
  • Pokharkar VB , MandpeLP , PadamwarMN , AmbikeAA , MahadikKR , ParadkarA. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol.167(1), 20–25 (2006).
  • Chiou WL . Pharmaceutical applications of solid dispersion systems: x‐ray diffraction and aqueous solubility studies on griseofulvin‐polyethylene glycol 6000 systems. J. Pharm. Sci.66(7), 989–991 (1977).
  • Bhugra C , PikalMJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci.97(4), 1329–1349 (2008).
  • Aso Y , YoshiokaS , KojimaS. Molecular mobility‐based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly (vinylpyrrolidone) solid dispersions. J. Pharm. Sci.93(2), 384–391 (2004).
  • Zhou D , GrantDJ , ZhangGG , LawD , SchmittEA. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. J. Pharm. Sci.96(1), 71–83 (2007).
  • Meng F , GalaU , ChauhanH. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev. Ind. Pharm.41(9), 1401–1415 (2015).
  • Food and Drug Administration, New Drug Application (NDA) (2019). www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/NewDrugApplicationNDA/
  • Bhatnagar P , DhoteV , ChandraMahajan S , KumarMishra P , KumarMishra D. Solid dispersion in pharmaceutical drug development: from basics to clinical applications. Curr. Drug Deliv.11(2), 155–171 (2014).
  • Newman A , NagapudiK , WenslowR. Amorphous solid dispersions: a robust platform to address bioavailability challenges. Ther. Deliv.6(2), 247–261 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.