1,250
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanogels As drug-delivery Systems: a Comprehensive Overview

, ORCID Icon, , , , & show all
Pages 697-717 | Received 02 May 2019, Accepted 23 Oct 2019, Published online: 02 Dec 2019

References

  • Qiu L , QiaoM , ChenQet al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials35(37), 9877–9887 (2014).
  • Kono K , TakashimaM , YubaEet al. Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. J. Control. Release216, 69–77 (2015).
  • Catauro M , BollinoF , PapaleF. Synthesis of SiO2 system via sol–gel process: biocompatibility tests with a fibroblast strain and release kinetics. J. Biomed. Mater. Res. Part A102(6), 1677–1680 (2014).
  • Xue S , PeiD , JiangW , MuY , WanX. A simple and fast formation of biodegradable poly(urethane-urea) hydrogel with high water content and good mechanical property. Polymer99, 340–348 (2016).
  • Kabanov AV , VinogradovSV. Nanogels as pharmaceutical carriers. Multifunct. Pharm. Nanocarriers67–80 (2008).
  • Chintan D , GayatriP. Application of nanohydrogels in drug delivery systems: recent patents review. Recent Patents Nanotechnol.9(1), 17–25 (2015).
  • Khalili ST , MohsenifarA , BeykiMet al. Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT-Food Sci. Technol.60(1), 502–508 (2015).
  • Akram M , HussainR. Nanohydrogels: history, development, and applications in drug delivery. Nanocell. Nanohydrog. Matrices297–330 (2017).
  • Hamidi M , AzadiA , RafieiP. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev.60(15), 1638–1649 (2008).
  • Pehlivanoğlu H , DemirciM , TokerOS , KonarN , KarasuS , SagdicO. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: production and food-based applications. Crit. Rev. Food Sci. Nutr.58(8), 1330–1341 (2018).
  • Davidovich-Pinhas M . Oleogels: A Promising Tool for Delivery of Hydrophobic Bioactive Molecules.Future Science, London, UK (2016).
  • Hamidi M , RafieiP , AzadiA , Mohammadi-SamaniS. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J. Pharm. Sci.100(5), 1702–1711 (2011).
  • Oh JK , SiegwartDJ , MatyjaszewskiK. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules8(11), 3326–3331 (2007).
  • Bae Y , JangW-D , NishiyamaN , FukushimaS , KataokaK. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst.1(3), 242–250 (2005).
  • An Z , QiuQ , LiuG. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem. Commun.47(46), 12424–12440 (2011).
  • Raemdonck K , DemeesterJ , DeSmedt S. Advanced nanogel engineering for drug delivery. Soft Matter.5(4), 707–715 (2009).
  • Stuart MAC , HuckWT , GenzerJet al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater.9(2), 101 (2010).
  • Qiao Z-Y , ZhangR , DuF-S , LiangD-H , LiZ-C. Multi-responsive nanogels containing motifs of ortho ester, oligo (ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J. Control. Release152(1), 57–66 (2011).
  • Chacko RT , VenturaJ , ZhuangJ , ThayumanavanS. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev.64(9), 836–851 (2012).
  • Napier ME , DeSimoneJM. Nanoparticle drug delivery platform. J. Macromol. Sci. Part C Polym. Rev.47(3), 321–327 (2007).
  • Oh JK , DrumrightR , SiegwartDJ , MatyjaszewskiK. The development of microgels/nanogels for drug delivery applications. Progr. Polym. Sci.33(4), 448–477 (2008).
  • Kabanov AV , VinogradovSV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed.48(30), 5418–5429 (2009).
  • Motornov M , RoiterY , TokarevI , MinkoS. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progr. Polym. Sci35(1–2). 174–211 (2010).
  • Zha L , BanikB , AlexisF. Stimulus responsive nanogels for drug delivery. Soft Matter.7(13), 5908–5916 (2011).
  • Mura S , NicolasJ , CouvreurP. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater.12(11), 991 (2013).
  • Torchilin VP . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov.13(11), 813 (2014).
  • Ahmed EM . Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res.6(2), 105–121 (2015).
  • Assadpour E , MahdiJafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr.1–23 (2018).
  • Abaee A , MohammadianM , JafariSM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci. Technol.70, 69–81 (2017).
  • Mokhtari S , JafariSM , AssadpourE. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem.229, 286–295 (2017).
  • Karaca AC , ErdemIG , AkMM. Effects of polyols on gelation kinetics, gel hardness, and drying properties of alginates subjected to internal gelation. LWT92, 297–303 (2018).
  • Chan LW , LeeHY , HengPW. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydrate Polym.63(2), 176–187 (2006).
  • Kunjachan S , JoseS , LammersT. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J. Pharm. (AJP)4(2), (2014).
  • Fàbregas A , MiñarroM , García-MontoyaEet al. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan–tripolyphosphate nanoparticles. Int. J. Pharm.446(1–2), 199–204 (2013).
  • Fan W , YanW , XuZ , NiH. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces90, 21–27 (2012).
  • Akiyoshi K , KangE-C , KurumadaS , SunamotoJ , PrincipiT , WinnikFM. Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides). Macromolecules33(9), 3244–3249 (2000).
  • Sultana F , ManirujjamanM , Imran-Ul-HaqueMA , SharminS. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci.3(8), 95–105 (2013).
  • Ferreira SA , CoutinhoPJ , GamaFM. Synthesis and characterization of self-assembled nanogels made of pullulan. Materials4(4), 601–620 (2011).
  • Rekha M , SharmaCP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater. Artif. Organs20(2), 116–121 (2007).
  • Park S-J , NaK. Self-organized nanogels of polysaccharide derivatives in anti-cancer drug delivery. J. Pharm. Investig.40(4), 201–212 (2010).
  • Cooperstein MA , CanavanHEJB. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. 8(1), 19 (2013).
  • Sheikhpour M , BaraniL , KasaeianA. Biomimetics in drug delivery systems: a critical review. J. Control. Release253, 97–109 (2017).
  • Gros L , RingsdorfH , SchuppH. Polymeric antitumor agents on a molecular and on a cellular level?Angew. Chem. Int. Ed. English20(4), 305–325 (1981).
  • Li Y-Y , ChengH , ZhangZ-Get al. Cellular internalization and in vivo tracking of thermosensitive luminescent micelles based on luminescent lanthanide chelate. ACS Nano2(1), 125–133 (2008).
  • Li YY , ZhangXZ , KimGC , ChengH , ChengSX , ZhuoRX. Thermosensitive Y-shaped micelles of poly(oleic acid-Y-N-isopropylacrylamide) for drug delivery. Small2(7), 917–923 (2006).
  • Zarekar NS , LingayatVJ , PandeVV. Nanogel as a novel platform for smart drug delivery system. Nanosci. Nanotechnol.4(1), 25–31 (2017).
  • Deepthi V , KavithaA. Liposomal drug delivery system – a review. Rguhs J. Pharm. Sci.4(2), 47–56 (2014).
  • Kazakov S , LevonK. Liposome-nanogel structures for future pharmaceutical applications. Curr. Pharm. Design12(36), 4713–4728 (2006).
  • Maitra J , ShuklaVK. Cross-linking in hydrogels – a review. Am. J. Polyme. Sci.4(2), 25–31 (2014).
  • Sharma A , GargT , AmanAet al. Nanogel – an advanced drug delivery tool: current and future. Artif. Cells Nanomed. Biotechnol.44(1), 165–177 (2016).
  • Gonçalves C , PereiraP , GamaM. Self-assembled hydrogel nanoparticles for drug delivery applications. Materials3(2), 1420–1460 (2010).
  • Eskander S , SalehHE-D. Biodegradation: process mechanism. Environ. Sci. & Eng. 8(8), 1–31 (2017).
  • Lucas N , BienaimeC , BelloyC , QueneudecM , SilvestreF , Nava-SaucedoJ-E. Polymer biodegradation: mechanisms and estimation techniques – a review. Chemosphere73(4), 429–442 (2008).
  • Müller RJ . Biodegradability of polymers: regulations and methods for testing. Biopolym. Online10 (2005) https://doi.org/10.1002/3527600035.bpola012
  • van der Zee M . Analytical methods for monitoring biodegradation processes of environmentally degradable polymers. In: Handbook of Biodegradable Polymers. Wiley-VCH, New York, United States, 263–281 (2011).
  • Yallapu MM , ReddyMK , LabhasetwarV. Nanogels: chemistry to drug delivery. Biomed. Appl. Nanotechnol.131–171 (2007).
  • Nair HB , SungB , YadavVR , KannappanR , ChaturvediMM , AggarwalBB. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem. Pharmacol.80(12), 1833–1843 (2010).
  • Sultana F , Imran-Ul-HaqueM , ArafatM , SharminS. An overview of nanogel drug delivery system. J. Appl. Pharm Sci.3(8 Suppl. 1), S95–S105 (2013).
  • Nayak S , LyonLA. Soft nanotechnology with soft nanoparticles. Angew. Chem. Int. Ed.44(47), 7686–7708 (2005).
  • Donini C , RobinsonD , ColomboP , GiordanoF , PeppasN. Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharm.245(1), 83–91 (2002).
  • Luisi PL , StraubB. Reverse Micelles: Biological and Technological Relevance of Amphiphilic Structures in Apolar Media. Plenum Pub Corp, NY, USA (1984).
  • Landfester K , WillertM , AntoniettiM. Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules33(7), 2370–2376 (2000).
  • Kriwet B , WalterE , KisselT. Synthesis of bioadhesive poly(acrylic acid) nano-and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J. Control. Release56(1), 149–158 (1998).
  • Marek SR , ConnCA , PeppasNA. Cationic nanogels based on diethylaminoethyl methacrylate. Polymer51(6), 1237–1243 (2010).
  • Oh JK , TangC , GaoH , TsarevskyNV , MatyjaszewskiK. Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J. Am. Chem. Soc.128(16), 5578–5584 (2006).
  • Neamtu I , RusuAG , DiaconuA , NitaLE , ChiriacAP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv.24(1), 539–557 (2017).
  • Chen M , ZhaoY , YangW , YinM. UV-irradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir29(51), 16018–16024 (2013).
  • Booth C , AttwoodD. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun.21(9), 501–527 (2000).
  • Rodríguez-Hernández J , LecommandouxS. Reversible inside– out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc.127(7), 2026–2027 (2005).
  • Akiyoshi K , KobayashiS , ShichibeSet al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release54(3), 313–320 (1998).
  • Yu S , YaoP , JiangM , ZhangG. Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers83(2), 148–158 (2006).
  • Zamurovic M , ChristodoulouS , VazaiosA , IatrouE , PitsikalisM , HadjichristidisN. Micellization behavior of complex comblike block copolymer architectures. Macromolecules40(16), 5835–5849 (2007).
  • Yan L , TaoW. One-step synthesis of pegylated cationic nanogels of poly(N,N′-dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer51(10), 2161–2167 (2010).
  • Denkova A , MendesE , CoppensM-O. Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. J. Phys. Chem. B.112(3), 793–801 (2008).
  • Lin Y , AlexandridisP. Cosolvent effects on the micellization of an amphiphilic siloxane graft copolymer in aqueous solutions. Langmuir18(11), 4220–4231 (2002).
  • Ogawa K , SatoS , KokufutaE. Formation of intra-and interparticle polyelectrolyte complexes between cationic nanogel and strong polyanion. Langmuir21(11), 4830–4836 (2005).
  • Ghasemi S , JafariSM , AssadpourE , KhomeiriM. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym.177, 369–377 (2017).
  • Esfahani R , JafariSM , JafarpourA , DehnadD. Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocoll.90, 291–298 (2019).
  • Kohli E , HanH-Y , ZemanAD , VinogradovSV. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J. Control. Release121(1), 19–27 (2007).
  • Sun H , YuJ , GongP , XuD , ZhangC , YaoS. Novel core–shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications. J. Magn. Magn. Mater.294(3), 273–280 (2005).
  • Xu D-M , YaoS-D , LiuY-Bet al. Size-dependent properties of M-PEIs nanogels for gene delivery in cancer cells. Int. J. Pharm.338(1), 291–296 (2007).
  • Hayashi H , IijimaM , KataokaK , NagasakiY. pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules37(14), 5389–5396 (2004).
  • Lee H , MokH , LeeS , OhY-K , ParkTG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J. Control. Release119(2), 245–252 (2007).
  • Mok H , ParkTG. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjug. Chem.17(6), 1369–1372 (2006).
  • Ma Q , RemsenEE , KowalewskiT , WooleyKL. Two-dimensional, shell-cross-linked nanoparticle arrays. J. Am. Chem. Soc.123(19), 4627–4628 (2001).
  • Gratton SE , PohlhausPD , LeeJ , GuoJ , ChoMJ , DeSimoneJM. Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. J. Control. Release121(1), 10–18 (2007).
  • Alles N , SoysaNS , HussainMAet al. Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur. J. Pharm. Sci.37(2), 83–88 (2009).
  • Hasegawa U , SawadaS-i , ShimizuTet al. Raspberry-like assembly of cross-linked nanogels for protein delivery. J. Control. Release140(3), 312–317 (2009).
  • Im Lee J , KimHS , YooHS. DNA nanogels composed of chitosan and pluronic with thermo-sensitive and photo-crosslinking properties. Int. J. Pharm.373(1), 93–99 (2009).
  • Sun H , ZhangL , ZhuX , KongC , ZhangC , YaoS. Poly(PEGMA) magnetic nanogels: preparation via photochemical method, characterization and application as drug carrier. Sci. China Series B Chem.52(1), 69 (2009).
  • Bencherif SA , SiegwartDJ , SrinivasanAet al. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials30(29), 5270–5278 (2009).
  • Misson M , ZhangH , JinB. Nanobiocatalyst advancements and bioprocessing applications. J. Royal Soc. Interface12(102), 20140891 (2015).
  • Ferreira SlA , CoutinhoPJ , GamaFM. Self-assembled nanogel made of mannan: synthesis and characterization. Langmuir26(13), 11413–11420 (2010).
  • Zhang H , ZhaiY , WangJ , ZhaiG. New progress and prospects: the application of nanogel in drug delivery. Mater. Sci. Eng. C60, 560–568 (2016).
  • Khalid Q , AhmadM , UsmanMinhas M. Hydroxypropyl-β-cyclodextrin hybrid nanogels as nano-drug delivery carriers to enhance the solubility of dexibuprofen: characterization, in vitro release, and acute oral toxicity studies. Adv. Polym. Technol.37(6), 2171–2185 (2018).
  • Zhu K , YeT , LiuJet al. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm.441(1–2), 721–727 (2013).
  • Cho H , JammalamadakaU , TappaKJM. Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies. Materials (Basel)11(2), 302 (2018).
  • Liu H , LiW , LiuCet al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication8(4), 045012 (2016).
  • Sawada S-i , SasakiY , NomuraY , AkiyoshiK. Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid Polym. Sci.289(5–6), 685–691 (2011).
  • Garg T , SinghS , GoyalAK. Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst.30(5), 369–409 (2013).
  • Garg T , GoyalAK. Biomaterial-based scaffolds–current status and future directions. Exp. Opin. Drug Deliv.11(5), 767–789 (2014).
  • Guerrero-Ramírez L , Nuno-DonlucasS , CesterosL , KatimeI. Smart copolymeric nanohydrogels: synthesis, characterization and properties. Mater. Chem. Phys.112(3), 1088–1092 (2008).
  • Sultana F , ManirujjamanM , Imran-Ul-HaqueMA , SharminSJJAPS. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci.3(8), 95–105 (2013).
  • Kataria K , SharmaA , GargT , GoyalAK , RathG. Novel technology to improve drug loading in polymeric nanofibers. Drug Deliv. Lett.4(1), 79–86 (2014).
  • Singh N , GillV , GillP. Nanogel based artificial chaperone technology: an overview. Open J. Adv. Drug Deliv.1(3), 271–276 (2013).
  • Vinogradov SV , BronichTK , KabanovAV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev.54(1), 135–147 (2002).
  • Cho H , JammalamadakaU , TappaK. Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies. Materials.11(2), 302 (2018).
  • Yadav H , AnwarAlhalabi N , AlsalloumG. Nanogels as novel drug delivery systems: a review.J. Pharm. Pharm. Res.1, 5 (2017).
  • Rossetti GH , AlbizzatiED , AlfanoOM. Decomposition of formic acid in a water solution employing the photo-Fenton reaction. Ind. Eng. Chem. Re.41(6), 1436–1444 (2002).
  • Hu Y , WangJ , WangH , WangQ , ZhuJ , YangY. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. Langmuir.28(49), 17186–17192 (2012).
  • Zhou M , WangT , HuQ , LuoY. Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocoll.57, 20–29 (2016).
  • Abdel-Rashid RS , HelalDA , OmarMM , SisiAME. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int. J. Nanomedicine14, 2973–2983 (2019).
  • De Backer L , BraeckmansK , StuartMC , DemeesterJ , DeSmedt SC , RaemdonckK. Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Release206, 177–186 (2015).
  • Yuki Y , NochiT , KongIGet al. Nanogel-based antigen-delivery system for nasal vaccines. Biotechnol. Genet. Eng. Rev.29(1), 61–72 (2013).
  • Jain S , AncheriaRK , ShrivastavaS , SoniSL , SharmaM. An overview of nanogel – novel drug delivery system. Asian J. Pharm. Res. Dev.7(2), 47–55 (2019).
  • Kaur M , GargT , RathG , GoyalAK. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit. Rev. Ther. Drug Carrier Syst.31(1), (2014).
  • Peng J , QiT , LiaoJet al. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials34(34), 8726–8740 (2013).
  • Bae KH , MokH , ParkTG. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials29(23), 3376–3383 (2008).
  • Vinogradov SV , ZemanAD , BatrakovaEV , KabanovAV. Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J. Control. Release107(1), 143–157 (2005).
  • Sasaki Y , AsayamaW , NiwaTet al. Amphiphilic polysaccharide nanogels as artificial chaperones in cell-free protein synthesis. Macromol. Biosci.11(6), 814–820 (2011).
  • Raemdonck K , NaeyeB , HøgsetA , DemeesterJ , DeSmedt SC. Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. J. Control. Release145(3), 281–288 (2010).
  • Abd El-Rehim HA , SwilemAE , KlingnerA , HegazyE-SA , HamedAA. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone–poly (acrylic acid) Nanogel dispersions prepared by γ radiation. Biomacromolecules14(3), 688–698 (2013).
  • Prasad K , VijayG , JayakumariN , DhananjayaA , ValliyilL. Nanogel as a smart vehicle for local drug delivery in dentistry. Am. J. Pharm. Health Res.3(1), 19–30 (2015).
  • Daithankar AV , ShiradkarMR. Thermoreversibal anesthetic gel for periodontal intrapocket delivery of mepivacaine hydrochloride. Der Pharm. Lett.4(3), 889–896 (2012).
  • Tan JP , TanMB , TamMK. Application of nanogel systems in the administration of local anesthetics. Local Reg. Anesth.3, 93 (2010).
  • Wu Z , ZhangX , GuoH , LiC , YuD. An injectable and glucose-sensitive nanogel for controlled insulin release. J. Mater. Chem.22(42), 22788–22796 (2012).
  • Sahoo CK , NayakPK , SarangiDK , SahooTK. Intra vaginal drug delivery system: an overview. Am. J. Adv. Drug Deliv.1, 43–55 (2013).
  • Manna S , LakshmiU , RacharlaM , SinhaP , KanthalL , KumarS. Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of tenofovir. J. Appl. Pharm. Sci.6, 22–29 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.