453
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanocarriers in Effective Pulmonary Delivery of siRNA: Current Approaches and Challenges

, , , , &
Pages 311-332 | Received 22 Feb 2019, Accepted 29 Apr 2019, Published online: 22 May 2019

References

  • Fire A , XuS , MontgomeryMK , KostasSA , DriverSE , MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806 (1998).
  • Fire AZ , MelloCC. The nobel prize in physiology or medicine 2006. (2006) http://www.nobelprize.org/nobel_prizes/medicine/laureates
  • Whitehead KA , LangerR , AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8(2), 129 (2009).
  • Zamore PD . RNA interference: listening to the sound of silence. Nat. Struct. Mol. Biol.8(9), 746 (2001).
  • Kaiser PK , SymonsRA , ShahSMet al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am. J. Ophthalmol.150(1), 33–39. e32 (2010).
  • Kim DH , RossiJJ. RNAi mechanisms and applications. BioTechniques44(5), 613–616 (2008).
  • Li S-D , HuangL. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm.3(5), 579–588 (2006).
  • Li B-j , TangQ , ChengDet al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med.11(9), 944 (2005).
  • Lee C-C , ChiangB-L. RNA interference: new therapeutics in allergic diseases. Curr. Gene Ther.8(4), 236–246 (2008).
  • Lam JK-W , LiangW , ChanH-K. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev.64(1), 1–15 (2012).
  • Paranjpe M , Müller-GoymannC. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci.15(4), 5852–5873 (2014).
  • Carvalho TC , PetersJI , WilliamsIII RO. Influence of particle size on regional lung deposition – what evidence is there?Int. J. Pharm.406(1-2), 1–10 (2011).
  • Sakagami M . In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv. Drug Deliv. Rev.58(9-10), 1030–1060 (2006).
  • Agu RU , UgwokeMI , ArmandM , KingetR , VerbekeN. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res.2(4), 198 (2001).
  • Merkel OM , RubinsteinI , KisselT. siRNA delivery to the lung: what's new?Adv. Drug Deliv. Rev.75, 112–128 (2014).
  • Ngan CL , AsmawiAA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv. Transl. Res.8(5), 1527–1544 (2018).
  • Roy I , VijN. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine6(2), 237–244 (2010).
  • Sanders N , RudolphC , BraeckmansK , DeSmedt SC , DemeesterJ. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev.61(2), 115–127 (2009).
  • Knowles MR , BoucherRC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest.109(5), 571–577 (2002).
  • Kolte A , PatilS , LesimpleP , HanrahanJW , MisraA. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int. J. Pharm.524(1-2), 382–396 (2017).
  • Patil S , LalaniR , BhattPet al. Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics. RSC Adv.8(62), 35461–35473 (2018).
  • Rosenecker J , NaundorfS , GerstingSet al. Interaction of bronchoalveolar lavage fluid with polyplexes and lipoplexes: analysing the role of proteins and glycoproteins. J. Gene Med.5(1), 49–60 (2003).
  • Merkel OM , BeyerleA , LibrizziDet al. Nonviral siRNA delivery to the lung: investigation of PEG− PEI polyplexes and their in vivo performance. Mol. Pharm.6(4), 1246–1260 (2009).
  • De Backer L , BraeckmansK , StuartMC , DemeesterJ , DeSmedt SC , RaemdonckK. Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Rel.206, 177–186 (2015).
  • Benfer M , KisselT. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur. J. Pharm. Biopharm.80(2), 247–256 (2012).
  • Groneberg D , EynottP , LimSet al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology40(4), 367–373 (2002).
  • Khalil IA , KogureK , AkitaH , HarashimaH. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev.58(1), 32–45 (2006).
  • Lebhardt T , RoeslerS , Beck-BroichsitterM , KisselT. Polymeric nanocarriers for drug delivery to the lung. J. Drug. Deliv. Sci. Technol.20(3), 171–180 (2010).
  • Boussif O , Lezoualc'hF , ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA92(16), 7297–7301 (1995).
  • Hatakeyama H , ItoE , AkitaHet al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Control. Rel.139(2), 127–132 (2009).
  • Lee SH , KimSH , ParkTG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem. Biophys. Res. Commun.357(2), 511–516 (2007).
  • Choi SW , LeeSH , MokH , ParkTG. Multifunctional siRNA delivery system: polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnol. Prog.26(1), 57–63 (2010).
  • Parton RG , RichardsAA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic4(11), 724–738 (2003).
  • Yacobi NR , MalmstadtN , FazlollahiFet al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am. J. Respir. Cell Mol. Biol.42(5), 604–614 (2010).
  • Macro L , JaiswalJK , SimonSM. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J. Cell Sci.125(23), 5721–5732 (2012).
  • Rejman J , BragonziA , ConeseM. Role of clathrin-and caveolae-mediated endocytosis in gene transfer mediated by lipo-and polyplexes. Mol. Ther.12(3), 468–474 (2005).
  • Chiang P-C , AlsupJW , LaiY , HuY , HeydeBR , TungD. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res. Lett.4(3), 254 (2009).
  • Hickey AJ , Garcia-ContrerasL. Immunological and toxicological implications of short-term studies in animals of pharmaceutical aerosol delivery to the lungs: relevance to humans. Crit. Rev. Ther. Drug Carrier Syst.18(4), (2001).
  • Chen Y , GaoD-Y , HuangL. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev.81, 128–141 (2015).
  • Pilcer G , AmighiK. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm.392(1-2), 1–19 (2010).
  • Scaggiante B , DapasB , FarraRet al. Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab.12(1), 11–23 (2011).
  • Zhang X , ShanP , JiangDet al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem.279(11), 10677–10684 (2004).
  • Bitko V , MusiyenkoA , ShulyayevaO , BarikS. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med.11(1), 50 (2005).
  • Fulton A , PetersST , PerkinsGAet al. Effective treatment of respiratory alphaherpesvirus infection using RNA interference. PLoS ONE4(1), e4118 (2009).
  • Choi M , GuJ , LeeM , RhimT. A new combination therapy for asthma using dual-function dexamethasone-conjugated polyethylenimine and vitamin D binding protein siRNA. Gene Ther.24(11), 727 (2017).
  • Patil S , BhattP , LalaniRet al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Adv.6(112), 110951–110963 (2016).
  • Miwata K , OkamotoH , NakashimaTet al. Intratracheal administration of siRNA dry powder targeting vascular endothelial growth factor inhibits lung tumor growth in mice. Mol. Ther. Nucleic Acids12, 698–706 (2018).
  • Garbuzenko OB , IvanovaV , KholodovychVet al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA (s). Nanomedicine13(6), 1983–1992 (2017).
  • Okuda T , MorishitaM , MizutaniK , ShibayamaA , OkazakiM , OkamotoH. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J. Control. Rel.279, 99–113 (2018).
  • Rosas-Taraco AG , HigginsDM , Sánchez-CampilloJ , LeeEJ , OrmeIM , González-JuarreroM. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis91(1), 98–106 (2011).
  • Merckx P , DeBacker L , Van HoeckeLet al. Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy. Acta Biomater.78, 236–246 (2018).
  • Otsuka M , ShiratoriM , ChibaHet al. Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes. Exp. Lung Res.43(6-7), 271–282 (2017).
  • Kim D-H , ParkH-J , LimSet al. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat. Commun.9(1), 503 (2018).
  • Tomaru A , KobayashiT , HinnehJet al. Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther.24(11), 706 (2017).
  • Bohr A , TsapisN , AndreanaIet al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules18(8), 2379–2388 (2017).
  • Jamali A , MottaghitalabF , AbdoliAet al. Inhibiting influenza virus replication and inducing protection against lethal influenza virus challenge through chitosan nanoparticles loaded by siRNA. Drug Deliv. Transl. Res.8(1), 12–20 (2018).
  • Reischl D , ZimmerA. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine5(1), 8–20 (2009).
  • Thomas CE , EhrhardtA , KayMA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet.4(5), 346 (2003).
  • Lee SJ , SonS , YheeJYet al. Structural modification of siRNA for efficient gene silencing. Biotechnol. Adv.31(5), 491–503 (2013).
  • Shen C , BuckAK , LiuX , WinklerM , ReskeSN. Gene silencing by adenovirus-delivered siRNA. FEBS Lett.539(1-3), 111–114 (2003).
  • Hosono T , MizuguchiH , KatayamaKet al. Adenovirus vector-mediated doxycycline-inducible RNA interference. Hum. Gene Ther.15(8), 813–819 (2004).
  • Davé UP , JenkinsNA , CopelandNG. Gene therapy insertional mutagenesis insights. Science303(5656), 333–333 (2004).
  • Kohn DB , SadelainM , GloriosoJC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer3(7), 477 (2003).
  • Ruigrok M , FrijlinkH , HinrichsW. Pulmonary administration of small interfering RNA: The route to go?J. Control. Rel.235, 14–23 (2016).
  • Ghosh S , LalaniR , PatelVet al. Combinatorial nanocarriers against drug resistance in hematological cancers: opportunities and emerging strategies. J Control. Rel.296, 114–139 (2019).
  • Qiu Y , LamJ , LeungS , LiangW. Delivery of RNAi therapeutics to the airways—from bench to bedside. Molecules21(9), 1249 (2016).
  • De Backer L , CerradaA , Perez-GilJ , DeSmedt SC , RaemdonckK. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J. Control. Rel.220(Pt B), 642–650 (2015).
  • Tseng Y-C , MozumdarS , HuangL. Lipid-based systemic delivery of siRNA. Adv. Drug Deliv. Rev.61(9), 721–731 (2009).
  • Lin Q , ChenJ , ZhangZ , ZhengG. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine9(1), 105–120 (2014).
  • Dokka S , ToledoD , ShiX , CastranovaV , RojanasakulY. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res.17(5), 521–525 (2000).
  • Wang J , LuZ , WientjesMG , AuJL-S. Delivery of siRNA therapeutics: barriers and carriers. AAPS J.12(4), 492–503 (2010).
  • Clark KL , HughesSA , BulsaraPet al. Pharmacological characterization of a novel ENaCα siRNA (GSK2225745) with potential for the treatment of cystic fibrosis. Mol. Ther. Nucleic Acids2 (2013).
  • Thanki K , BlumKG , ThakurA , RoseF , FogedC. Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther. Deliv.9(10), 731–749 (2018).
  • Zamora-Avila DE , Zapata-BenavidesP , Franco-MolinaMAet al. WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther.16(12), 892–899 (2009).
  • Griesenbach U , KitsonC , GarciaESet al. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Respir. Res.7(1), 26 (2006).
  • Chernikov IV , GladkikhDV , MeschaninovaMIet al. Cholesterol-containing nuclease-resistant siRNA accumulates in tumors in a carrier-free mode and silences MDR1 gene. Mol. Ther. Nucleic Acids6, 209–220 (2017).
  • Moschos SA , JonesSW , PerryMMet al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem.18(5), 1450–1459 (2007).
  • Semple SC , KlimukSK , HarasymTOet al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta1510(1-2), 152–166 (2001).
  • Semple SC , AkincA , ChenJet al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28(2), 172 (2010).
  • Love KT , MahonKP , LevinsCGet al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107(5), 1864–1869 (2010).
  • Akinc A , ZumbuehlA , GoldbergMet al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol.26(5), 561 (2008).
  • Pack DW , HoffmanAS , PunS , StaytonPS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.4(7), 581 (2005).
  • Xie Y , MerkelOM. Pulmonary delivery of siRNA via polymeric vectors as therapies of asthma. Arch. Pharm. (Weinheim)348(10), 681–688 (2015).
  • Zhao M-D , ChengJ-L , YanJ-Jet al. Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int. J. Nanomedicine11, 1323 (2016).
  • Singha K , NamgungR , KimWJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther.21(3), 133–147 (2011).
  • Putnam D . Polymers for gene delivery across length scales. Nat. Mater.5(6), 439 (2006).
  • Richard I , ThibaultM , DeCrescenzo G , BuschmannMD , LavertuM. Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules14(6), 1732–1740 (2013).
  • Cun D , JensenLB , NielsenHM , MoghimiM , FogedC. Polymeric nanocarriers for siRNA delivery: challenges and future prospects. J. Biomed. Nanotechnol.4(3), 258–275 (2008).
  • Hsu CY , UludağH. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials33(31), 7834–7848 (2012).
  • Xie Y , KimNH , NaditheVet al. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J. Control. Rel.229, 120–129 (2016).
  • Steele TW , ZhaoX , TarchaP , KisselT. Factors influencing polycation/siRNA colloidal stability toward aerosol lung delivery. Eur. J. Pharm. Biopharm.80(1), 14–24 (2012).
  • Xu C-X , JereD , JinHet al. Poly (ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am. J. Respir. Crit. Care Med.178(1), 60–73 (2008).
  • Luo Y , ZhaiX , MaCet al. An inhalable β2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J. Control. Rel.162(1), 28–36 (2012).
  • Park S-C , NamJ-P , KimY-M , KimJ-H , NahJ-W , JangM-K. Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. Int. J. Nanomedicine8, 3663 (2013).
  • Bao Y , JinY , ChivukulaPet al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res.30(2), 342–351 (2013).
  • Werfel TA , JacksonMA , KavanaughTEet al. Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo. J. Control. Rel.255, 12–26 (2017).
  • Yu H , XuZ , ChenXet al. Reversal of lung cancer multidrug resistance by p H-R esponsive micelleplexes mediating co-d elivery of siRNA and paclitaxel. Macromol. Biosci.14(1), 100–109 (2014).
  • Yu H , ZouY , JiangLet al. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials34(11), 2738–2747 (2013).
  • Liu S , NugrohoAE , ShudouM , MaeyamaK. Regulation of mucosal mast cell activation by short interfering RNAs targeting syntaxin4. Immunol. Cell Biol.90(3), 337–345 (2012).
  • Cheng Y , YumulRC , PunSH. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed.55(39), 12013–12017 (2016).
  • Feldmann DP , ChengY , KandilRet al. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J. Control. Rel.276, 50–58 (2018).
  • Patil Y , PanyamJ. Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm.367(1-2), 195–203 (2009).
  • Kong W-H , SungD-K , ShimY-Het al. Efficient intracellular siRNA delivery strategy through rapid and simple two steps mixing involving noncovalent post-PEGylation. J. Control. Rel.138(2), 141–147 (2009).
  • Danhier F , AnsorenaE , SilvaJM , CocoR , LeBreton A , PréatV. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Rel.161(2), 505–522 (2012).
  • Panyam J , ZhouW-Z , PrabhaS , SahooSK , LabhasetwarV. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J.16(10), 1217–1226 (2002).
  • Qaddoumi MG , GukasyanHJ , DavdaJ , LabhasetwarV , KimK-J , LeeV. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis.9, 559–568 (2003).
  • Das J , DasS , PaulA , SamadderA , BhattacharyyaSS , Khuda-BukhshAR. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol. Lett.225(3), 454–466 (2014).
  • Su W-P , ChengF-Y , ShiehD-B , YehC-S , SuW-C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int. J. Nanomedicine7, 4269 (2012).
  • Grabowski N , HillaireauH , VergnaudJet al. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int. J. Pharm.454(2), 686–694 (2013).
  • Ali H , KalashnikovaI , WhiteMA , ShermanM , RyttingE. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm.454(1), 149–157 (2013).
  • Germershaus O , MaoS , SitterbergJ , BakowskyU , KisselT. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J. Control. Rel.125(2), 145–154 (2008).
  • Alameh M , DeJesusD , JeanMet al. Low molecular weight chitosan nanoparticulate system at low N: P ratio for nontoxic polynucleotide delivery. Int. J. Nanomedicine7, 1399 (2012).
  • Nascimento AV , SinghA , BousbaaH , FerreiraD , SarmentoB , AmijiMM. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater.47, 71–80 (2017).
  • Lavertu M , MethotS , Tran-KhanhN , BuschmannMD. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials27(27), 4815–4824 (2006).
  • Jere D , JiangH-L , KimY-Ket al. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int. J. Pharm.378(1-2), 194–200 (2009).
  • Akhtar S , BenterIF. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest.117(12), 3623–3632 (2007).
  • Kesharwani P , JainK , JainNK. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci.39(2), 268–307 (2014).
  • Thakur S , KesharwaniP , TekadeRK , JainNK. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer59, 67–92 (2015).
  • Wu J , ZhouJ , QuF , BaoP , ZhangY , PengL. Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem. Commun. (3), 313–315 (2005).
  • Navarro G , de ILarduyaCT. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine5(3), 287–297 (2009).
  • Shcharbin D , DzmitrukV , ShakhbazauAet al. Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics3(3), 458–473 (2011).
  • Conti DS , BrewerD , GrashikJ , AvasaralaS , da RochaSR. Poly (amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol. Pharm.11(6), 1808–1822 (2014).
  • Bielski E , ZhongQ , MirzaHet al. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int. J. Pharm.527(1-2), 171–183 (2017).
  • Biswas S , DeshpandePP , NavarroG , DodwadkarNS , TorchilinVP. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials34(4), 1289–1301 (2013).
  • Taratula O , GarbuzenkoOB , KirkpatrickPet al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J. Control. Rel.140(3), 284–293 (2009).
  • Cabral-Marques H , AlmeidaR. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm.73(1), 121–129 (2009).
  • Hibbitts A , O'mahonyA , FordeEet al. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J. Aerosol. Med. Pulm. Drug. Deliv.27(6), 466–477 (2014).
  • Menuel S , FontanayS , ClarotI , DuvalRE , DiezL , MarsuraA. Synthesis and complexation ability of a novel bis-(guanidinium)-tetrakis-(β-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection. Bioconjug. Chem.19(12), 2357–2362 (2008).
  • Mandal B , BhattacharjeeH , MittalNet al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine9(4), 474–491 (2013).
  • Jensen DK , JensenLB , KoochekiSet al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Control. Rel.157(1), 141–148 (2012).
  • Yang Y , CheowWS , HadinotoK. Dry powder inhaler formulation of lipid–polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles. Int. J. Pharm.434(1-2), 49–58 (2012).
  • Eguchi A , DowdySF. siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci.30(7), 341–345 (2009).
  • Meade BR , DowdySF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev.59(2-3), 134–140 (2007).
  • Turner JJ , JonesS , FabaniMM , IvanovaG , ArzumanovAA , GaitMJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis.38(1), 1–7 (2007).
  • Simeoni F , MorrisMC , HeitzF , DivitaG. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res.31(11), 2717–2724 (2003).
  • Veldhoen S , LauferSD , TrampeA , RestleT. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res.34(22), 6561–6573 (2006).
  • Moschos SA , WilliamsAE , LindsayMA. Cell-penetrating-peptide-mediated siRNA lung delivery. Biochemical Society Transactions, Volume 35, part 4, Cell penetrating peptide.Portland Press Limited, 807–810 (2007)
  • Varshosaz J , TaymouriS. Hollow inorganic nanoparticles as efficient carriers for siRNA delivery: a comprehensive review. Curr. Pharm. Des.21(29), 4310–4328 (2015).
  • Cai R-Q , LiuD-Z , CuiHet al. Charge reversible calcium phosphate lipid hybrid nanoparticle for siRNA delivery. Oncotarget8(26), 42772 (2017).
  • Taratula O , GarbuzenkoOB , ChenAM , MinkoT. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug. Target.19(10), 900–914 (2011).
  • Conde J , TianF , HernándezYet al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials34(31), 7744–7753 (2013).
  • Durcan N , MurphyC , CryanS-A. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol. Pharm.5(4), 559–566 (2008).
  • Mainelis G , SeshadriS , GarbuzenkoO , HanT , WangZ , MinkoT. Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice. J. Aerosol. Med. Pulm. Drug. Deliv.26(6), 345–354 (2013).
  • Xue W , DahlmanJE , TammelaTet al. Small RNA combination therapy for lung cancer. Proc. Natl Acad. Sci. USA111 (34), E3553–E3561 (2014).
  • Sung DK , KongWH , ParkKet al. Noncovalenly PEGylated CTGF siRNA/PDMAEMA complex for pulmonary treatment of bleomycin-induced lung fibrosis. Biomaterials34(4), 1261–1269 (2013).
  • Ding L , ZhuC , YuFet al. Pulmonary delivery of polyplexes for combined PAI-1 gene silencing and CXCR4 inhibition to treat lung fibrosis. Nanomedicine14(6), 1765–1776 (2018).
  • Garbuzenko OB , IvanovaV , KholodovychVet al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine13(6), 1983–1992 (2017).
  • Patel V , LalaniR , BardoliwalaD , GhoshS , MisraA. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech8, 1–22 (2018).
  • Mukherjee B , MajiR , RoychowdhuryS , GhoshS. Toxicological concerns of engineered nanosize drug delivery systems. Am. J. Ther.23(1), e139–e150 (2016).
  • Davies B , MorrisT. Physiological parameters in laboratory animals and humans. Pharm. Res.10(7), 1093–1095 (1993).
  • Cryan S-A , SivadasN , Garcia-ContrerasL. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliv. Rev.59(11), 1133–1151 (2007).
  • DeVincenzo J , Lambkin-WilliamsR , WilkinsonTet al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl Acad. Sci. USA107(19), 8800–8805 (2010).
  • Ulanova M , DutaF , PuttaguntaL , SchreiberAD , BefusAD. Spleen tyrosine kinase (Syk) as a novel target for allergic asthma and rhinitis. Expert Opin. Ther. Targets9(5), 901–921 (2005).
  • Borreli L . FDA approved patisiran, first treatment for polyneuropathy in hAATR. Neurology Today (2018).
  • Tatiparti K , SauS , KashawS , IyerA. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials7(4), 77 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.