279
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Formulation and Characterization of Glibenclamide and quercetin-loaded Chitosan Nanogels Targeting Skin Permeation

ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 281-293 | Received 20 Mar 2019, Accepted 18 Apr 2019, Published online: 16 May 2019

References

  • Salata OV . Applications of nanoparticles in biology and medicine. J. Nanobiotechnol.2(1), 3 (2004).
  • Piktel E , NiemirowiczK , WątekM , WollnyT , DeptułaP , BuckiR. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J. Nanobiotechnol.14(1), 39 (2016).
  • Duhan J , KumarR , KumarN , KaurP , NehraK , DuhanS. Nanotechnology: the new perspective in precision agriculture. Biotech. Rep.5, 11–23 (2017).
  • Chellappan DK , PanneerselvamJ , MadheswaranTet al. Nanogels linked with chitosan: a perspective. Minerva. Med.109(3), 254–255 (2018).
  • Chellappan DK , NgZY , WongJYet al. Immunological axis of curcumin-loaded vesicular drug-delivery systems. Fut. Med. Chem.10(8), 839–844 (2018).
  • Dua K , deJesus Andreoli Pinto T , ChellappanDK , GuptaG , BebawyM , HansbroPM. Advancements in nano drug delivery systems: a challenge for biofilms in respiratory diseases. Panmin. Med.60(1), 35–36 (2018).
  • Chellappan DK , HansbroPM , DuaKet al. Vesicular systems containing curcumin and their applications in respiratory disorders – a mini review. Pharm. Nanotechnol.5(4), 250–254 (2017).
  • Jeevanandam J , ChanY , DanquahM. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie128–129, 99–112 (2016).
  • Ray A , MandalA , JosephM , MitraA. Recent patents on nanoparticles and nanoformulations for cancer therapy. Recent. Pat. Drug. Deliv. Formulation.10(1), 11–23 (2016).
  • Dash T , KonkimallaV. Nanoformulations for delivery of biomolecules: focus on liposomal variants for siRNA delivery. Crit. Rev. Ther. Drug Carr. Sys.30(6), 469–93 (2013).
  • Awasthi R , RosebladeA , HansbroPM , RathboneMJ , DuaK , BebawyM. Nanoparticles in cancer treatment: opportunities and obstacles. Curr. Drug. Targets.doi: 10.2174/1389450119666180326122831 (2018).
  • Awasthi R , RathboneMJ , HansbroPM , BebawyM , DuaK. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug. Deliv. Transl. Res.8(1), 97–110 (2018).
  • Vicario-de-la-Torre M , ForcadaJ. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels3(2), 16 (2017).
  • Zhang H , ZhaiY , WangJ , ZhaiG. New progress and prospects: the application of nanogel in drug delivery. Mat. Sci. Engineer: C.60, 560–568 (2016).
  • Oh J , DrumrightR , SiegwartD , MatyjaszewskiK. The development of microgels/nanogels for drug delivery applications. Prog. Polymer. Sci.33(4), 448–477 (2008).
  • Zhang Q , ColazoJ , BergD , MugoS , SerpeM. Multiresponsive nanogels for targeted anticancer drug delivery. Mol. Pharma.14(8), 2624–2628 (2017).
  • Vinogradov S . Nanogels in the race for drug delivery. Nanomedicine5(2), 165–168 (2010).
  • Quan S , WangY , ZhouA , KumarP , NarainR. Galactose-based thermosensitive nanogels for targeted drug delivery of iodoazomycin arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma. Biomacromology16(7), 1978–1986 (2015).
  • Eckmann D , CompostoR , TsourkasA , MuzykantovV. Nanogel carrier design for targeted drug delivery. J. Mater. Chem. B.2(46), 8085–8097 (2014).
  • Gil M , ThambiT , PhanV , KimS , LeeD. Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J. Mater. Chem. B.5(34), 7140–7152 (2017).
  • Yu J , ZhangY , SunWet al. Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale8(17), 9178–9184 (2016).
  • Chacko R , VenturaJ , ZhuangJ , ThayumanavanS. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug. Del. Rev.64(9), 836–851 (2012).
  • Kang H , TrondoliA , ZhuGet al. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS. Nano5(6), 5094–5099 (2011).
  • Rampino A , BorgognaM , BlasiP , BellichB , CesàroA. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm.455(1–2), 219–28 (2013).
  • Du H , YangX , ZhaiG. Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine9(5), 723–740 (2014).
  • Liu Z , LvD , LiuSet al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One8(4), e60190 (2013).
  • Nagarwal R , NathSingh P , KantS , MaitiP , PanditJ. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem. Pharm. Bull.59(2), 272–278 (2011).
  • Islam P , WaterJ , BohrA , RantanenJ. Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics9(1), 1 (2016).
  • Makita-Chingombe F , KutscherH , DiTursiS , MorseG , MapongaC. Poly(lactic-co-glycolic) acid-chitosan dual loaded nanoparticles for antiretroviral nanoformulations. J. Drug Del.2016, 3810175 (2016).
  • Brunel F , VéronL , LadavièreC , DavidL , DomardA , DelairT. Synthesis and structural characterization of chitosan nanogels. Langmuir25(16), 8935–8943 (2009).
  • Farag R , MohamedR. Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules.18(1), 190–203 (2012).
  • Lin C , ChenC , LinZ , FangJ. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J. Food. Drug. Anal.25(2), 219–234 (2017).
  • Yuan H , ChenC , ChaiG , DuY , HuF. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol. Pharm.10(5), 1865–1873 (2013).
  • Chauhan B , ShimpiS , ParadkarA. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci.26(2), 219–230 (2005).
  • Behera A , SahooS. Preparation and evaluation of glibenclamide-loaded biodegradable nanoparticles. Trop. J. Pharm. Res.11(3), (2012).
  • Gelperina S , KisichK , IsemanM , HeifetsL. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Amer. J. Res. Crit. Care. Med.172(12), 1487–1490 (2005).
  • Kadam R , BourneD , KompellaU. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug. Met. Disp.40(7), 1380–1388 (2012).
  • Chitkara D , NikalajeS , MittalA , ChandM , KumarN. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug. Del. Transl. Res.2(2), 112–123 (2012).
  • Testa G , GambaP , BadilliUet al. Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One9(5), e96795 (2014).
  • Pool H , QuintanarD , FigueroaJet al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J. Nanomaterials2012, 1–12 (2012).
  • Hendrawati A , AkhmadS , SadewaA , Tasmini. The effect ofcombination of quercetin and glibenclamide on myocardial nuclear factor erythroid 2-related factor 2 (Nrf2) expression in Type 2 diabetic rat. Bangla. J. Med. Sci.16(2), 302–306 (2017).
  • Bhatia S . Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Nat. Poly. Drug. Del. Sys.33–93 (2016).
  • Dangi RS , ShakyaS. Preparation, optimization and characterization of PLGA nanoparticle. Intern. J. Pharm. Life Sci.4(7), 2810–2818 (2013).
  • Sharma N , MadanP , LinS. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian. J. Pharm. Sci.11(3), 404–416 (2016).
  • Madan JR , SagarB , ChellappanDK , DuaK. Development and evaluation of transdermal organogels containing nicorandil. Antiinflamm. Antialler. Agents. Med. Chem.12(3), 246–252 (2013).
  • Madan JR , GhugeNP , DuaK. Formulation and evaluation of proniosomes containing lornoxicam. Drug. Deliv. Transl. Res.6(5), 511–518 (2016).
  • Madan JR , AdokarBR , DuaK. Development and evaluation of in situ gel of pregabalin. Int. J. Pharm. Investig.5(4), 226–233 (2015).
  • Madan JR , KhudePA , DuaK. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int. J. Pharm. Investig.4(2), 60–64 (2014).
  • Dua K , PabrejaK , RamanaMV. Aceclofenac topical dosage forms: in vitro and in vivo characterization. Acta Pharm.60(4), 467–478 (2010).
  • Ali H , HanafyA. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J. Pharm. Sci.402–410 (2017).
  • Michaels A , ChandrasekaranS , ShawJ. Drug permeation through human skin: theory and in-vitro experimental measurement. AIChE. J.21(5), 985–996 (1975).
  • Koukaras E , PapadimitriouS , BikiarisD , FroudakisG. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol. Pharm.9(10), 2856–2862 (2012).
  • De Pinho Neves A , MilioliC , MüllerL , RiellaH , KuhnenN , StulzerH. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Coll. Surf A. Physicochem. Engineer. Asp.445, 34–39 (2014).
  • Fan W , YanW , XuZ , NiH. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Coll. Surf B. Biointer.90, 21–27 (2012).
  • Abioye A , IssahS , Kola-MustaphaA. Ex vivo skin permeation and retention studies on chitosan-ibuprofen-gellan ternary nanogel prepared by in situ ionic gelation technique-a tool for controlled transdermal delivery of ibuprofen. Inter. J. Pharm.490(1–2), 112–130 (2015).
  • Kunjachan S , JoseS. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian. J. Pharm.4(2), 148 (2010).
  • Yoksan R , JirawutthiwongchaiJ , ArpoK. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Coll. Surf B. Biointer.76(1), 292–297 (2010).
  • Ribeiro A , SilvaC , FerreiraD , VeigaF. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur. J. Pharm. Sci.25(1), 31–40 (2005).
  • Juttulapa M , PiriyaprasarthS , TakeuchiH , SriamornsakP. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian. J. Pharm. Sci.12(1), 21–7 (2017).
  • Katas H , AlparH. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Cont. Rel.115(2), 216–225 (2006).
  • Islam P , WaterJ , BohrA , RantanenJ. Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics9(1), 1 (2016).
  • Vedakumari W , AyazN , KarthickA , SenthilR , SastryT. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials - fabrication, characterization and in vivo analysis. Eur. J. Pharm. Sci.97, 106–112 (2017).
  • Mohammadpour Dounighi N , EskandariR , AvadiMR , ZolfagharianH , MirMohammad Sadeghi A , RezayatM. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Ven. Ani. Tox. Incl. Trop. Dis.18(1), 44–52 (2012).
  • Ruiz-Caro R , Veiga-OchoaM. Characterization and dissolution study of chitosan freeze-dried systems for drug controlled release. Molecules14(11), 4370–4386 (2009).
  • Shaik HR , HaribabuR , MdKhajamohiddinet al. Transdermal drug delivery system-simplified medication regimen – a review. Res. J. Pharm. Biol. Chem.2(4), 223–228 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.