212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Formulation of Polymeric Nanoparticles of Antidepressant Drug for Intranasal Delivery

, , &
Pages 683-696 | Received 17 Aug 2019, Accepted 23 Oct 2019, Published online: 20 Nov 2019

References

  • Friedman ES , AndersonIM , ArnoneD , DenkoT. Handbook of Studies on Depression. Springer Healthcare, Tarporley, UK (2014).
  • Manikandan S . Agomelatine: a novel melatonergic antidepressant. J. Pharmacol. Pharmacother.1(2), 122 (2010).
  • Kennedy SH , EisfeldBS. Agomelatine and its therapeutic potential in the depressed patient. Neuropsychiatr. Dis. Treat.3(4), 423 (2007).
  • Loo H , DaleryJ , MacherJ , PayenA. Pilot study comparing in blind the therapeutic effect of two doses of agomelatine, melatonin-agonist and selective 5HT2c receptors antagonist, in the treatment of major depressive disorders. L’Encephale.29(2), 165–171 (2003).
  • Sarkar MA . Drug metabolism in the nasal mucosa. Pharm. Res.9(1), 1–9 (1992).
  • Danhier F , AnsorenaE , SilvaJM , CocoR , LeBreton A , PréatV. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release161(2), 505–522 (2012).
  • Kumari A , YadavSK , YadavSC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces75(1), 1–18 (2010).
  • Vert M , MauduitJ , LiS. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials15(15), 1209–1213 (1994).
  • Prokop A , DavidsonJM. Nanovehicular intracellular delivery systems. J. Pharm. Sci.97(9), 3518–3590 (2008).
  • Ceña V , JátivaP. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. 13, 1513–1516 (2018).
  • Ong W-Y , ShaliniS-M , CostantinoL. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr. Med. Chem.21(37), 4247–4256 (2014).
  • Warnken ZN , SmythHD , WattsAB , WeitmanS , KuhnJG , WilliamsIii RO. Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol.35, 213–222 (2016).
  • Phukan K , NandyM , SharmaRB , SharmaHK. Nanosized drug delivery systems for direct nose to brain targeting: a review. Recent Pat. Drug Delivery Formulation10(2), 156–164 (2016).
  • Liu Q , ZhangQ. Nanoparticle systems for nose-to-brain delivery. In: Brain Targeted Drug Delivery System. HuileGao, XiaolingGao ( Eds). Elsevier Academic Press, London, UK, 219–239 (2019).
  • Sharma D , SharmaRK , SharmaNet al. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech16(5), 1108–1121 (2015).
  • de Oliveira Junior ER , NascimentoTL , SalomãoMA , da SilvaACG , ValadaresMC , LimaEM. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res.36(9), 131 (2019).
  • Joshi SA , ChavhanSS , SawantKK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm.76(2), 189–199 (2010).
  • Seju U , KumarA , SawantK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater.7(12), 4169–4176 (2011).
  • Govender T , StolnikS , GarnettMC , IllumL , DavisSS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release57(2), 171–185 (1999).
  • Christoper GP , RaghavanCV , SiddharthK , KumarMSS , PrasadRH. Formulation and optimization of coated PLGA–Zidovudine nanoparticles using factorial design and in vitroin vivo evaluations to determine brain targeting efficiency. Saudi Pharm. J.22(2), 133–140 (2014).
  • Shirakura T . Fractional factorial designs of two and three levels. Discrete Mathematics116(1–3), 99–135 (1993).
  • Yadav KS , SawantKK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech11(3), 1456–1465 (2010).
  • Gibson M . Pharmaceutical Preformulation and Formulation: a Practical Guide from Candidate Drug Selection to Commercial Dosage Form. CRC Press, FL, USA (2016).
  • Sun S-B , LiuP , ShaoF-M , MiaoQ-L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int. J. Clin. Exp. Med.8(10), 19670 (2015).
  • Margulis-Goshen K , MagdassiS. Formation of simvastatin nanoparticles from microemulsion. Nanomed. Nanotechnol. Biol. Med.5(3), 274–281 (2009).
  • Gaumet M , VargasA , GurnyR , DelieF. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm.69(1), 1–9 (2008).
  • Malinovskaya Y , MelnikovP , BaklaushevVet al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int. J. Pharm.524(1), 77–90 (2017).
  • Sahin A , EsendagliG , YerlikayaFet al. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artif. Cells Nanomed. Biotechnol.45, 1–11 (2017).
  • Xu R . Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology6(2), 112–115 (2008).
  • Clogston JD , PatriAK. Zeta potential measurement. In: Characterization of Nanoparticles Intended for Drug Delivery. McNeilSE (Ed.). Methods Mol. Biol.Humana Press, NJ, USA, 63–70 (2011).
  • Reichelt R . Scanning electron microscopy. In: Science of Microscopy. PWHawkes, JCHSpence ( Eds). Springer, NY, USA, 133–272 (2007).
  • Tsapis N . Imaging polymer nanoparticles by means of transmission and scanning electron microscopy techniques. In: Polymer Nanoparticles for Nanomedicines. 205–219 (2016).
  • Astete CE , SabliovCM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci., Polym. Ed.17(3), 247–289 (2006).
  • Çırpanlı Y , RobineauC , ÇapanY , ÇalışS. Etodolac loaded poly (lactide-co-glycolide) nanoparticles: formulation and in vitro characterization. Hacettepe Univ. J. Fac. Pharm.29(2), 105–114 (2009).
  • Mittal G , SahanaD , BhardwajV , KumarMR. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release119(1), 77–85 (2007).
  • Chourasiya V , BohreyS , PandeyA. Formulation, optimization, characterization and in vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 3 3 factorial design for oral delivery. Mater. Discov.5, 1–13 (2016).
  • Vanza J , JaniP , PandyaN , TandelH. Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug Dev. Ind. Pharm.44, 1–11 (2018).
  • Pandya NT , JaniP , VanzaJ , TandelH. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf. B165 (2018).
  • Chalikwar SS , MeneBS , PardeshiCV , BelgamwarVS , SuranaSJ. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polym. Plast. Technol. Eng.52(4), 368–380 (2013).
  • Sharma D , MaheshwariD , PhilipGet al. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. Biomed. Res. Int., 2014 (2014).
  • Patil GB , SuranaSJ. Fabrication and statistical optimization of surface engineered PLGA nanoparticles for naso-brain delivery of ropinirole hydrochloride: in vitro–ex vivo studies. J. Biomater. Sci. Polym. Ed.24(15), 1740–1756 (2013).
  • Mahajan HS , GattaniSG. Nasal administration of ondansetron using a novel microspheres delivery system Part II: ex vivo and in vivo studies. Pharm. Dev. Technol.15(6), 653–657 (2010).
  • Pardeshi CV , BelgamwarVS , TekadeAR , SuranaSJ. Novel surface modified polymer–lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J. Mater. Sci. Mater. Med.24(9), 2101–2115 (2013).
  • Javia A , ThakkarH. Intranasal delivery of tapentadol hydrochloride–loaded chitosan nanoparticles: formulation, characterisation and its in vivo evaluation. J. Microencapsulation34(7), 644–658 (2017).
  • Abelaira HM , ReusGZ , QuevedoJ. Animal models as tools to study the pathophysiology of depression. Revista brasileira de psiquiatria.35, S112–S120 (2013).
  • Deussing JM . Animal models of depression. Drug Discov. Today Dis. Models3(4), 375–383 (2007).
  • Cryan JF , ValentinoRJ , LuckiI. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev.29(4), 547–569 (2005).
  • Pardeshi CV , BelgamwarVS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin. Drug Deliv.10(7), 957–972 (2013).
  • Costantino L , BoraschiD. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?Drug Discov. Today17(7–8), 367–378 (2012).
  • Taş Ç , OzkanY , SavaşerA , BaykaraT. Invitro and ex vivo permeation studies of chlorpheniramine maleate gels prepared by carbomer derivatives. Drug Dev. Ind. Pharm.30(6), 637–647 (2004).
  • Mehta P , Al-KinaniAA , QutachiOet al. Assessing the ex vivo permeation behaviour of functionalised contact lens coatings engineered using an electrohydrodynamic technique. J. Phys. Mater.2(1), 014002 (2018).
  • Food and Drug Administration . Guidance for Industry Q1A (R2) Stability Testing of New Drug Substances and Products. Food and Drug Administration, MD, USA. ( Online) (2003). http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128204.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.