672
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Delivery Vectors for Gene Therapy in Liver Cancer

, , &
Pages 833-850 | Received 10 Oct 2019, Accepted 10 Nov 2019, Published online: 16 Dec 2019

References

  • Kunst C , HadererM , HeckelS , SchlosserS , MüllerM. The p53 family in hepatocellular carcinoma. Transl. Cancer Res.5(6), 632–638 (2016).
  • Institute NC . Cancer stat facts: Liver and intrahepatic bile duct cancer (2019). https://seer.cancer.gov/statfacts/html/livibd.html
  • Waghray A , MuraliAR , MenonKVN. Hepatocellular carcinoma: From diagnosis to treatment. World J. Hepatol.7(8), 1020–1029 (2015).
  • Ghassan K. Abou-Alfa WJ , MaeveLowery , MichaelD'Angelicaet al. Liver and bile duct cancer. In: Abeloff's Clinical Oncology.NiederhuberJ ( Ed.). 1373–1396 (2014).
  • Valverde-López F , AngelesLópez Garrido M , Ortega-SuazoEJ , Vadillo-CallesF , Muffak-GraneroK , Nogueras-LópezF. Results of 15-Year experience in liver transplant for hepatocellular carcinoma. Transplant Proc.50(2), 617–618 (2018).
  • Llovet JM , RicciS , MazzaferroVet al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med.359(4), 378–390 (2008).
  • Cazejust J , BessoudB , ColignonN , Garcia-AlbaC , PlanchéO , MenuY. Hepatocellular carcinoma vascularization: from the most common to the lesser known arteries. Diagn. Interv. Imaging95(1), 27–36 (2014).
  • Lam FDaMGEH . Delivery approaches of gene therapy in hepatocellular carcinoma. Anticancer Res.33, 4711–4718 (2013).
  • Chen S CJ , XiWet al. Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am. J. Clin. Oncol. Rep.37 (2014).
  • Tian G , LiuJ , ZhouJS , ChenW. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a pilot Phase II trial. Anticancer Drug.20(5), 389–395 (2009).
  • Ou SQ , MYL , KangP , LiZK , MengZB , FQ. Recombinant adenovirus-p53 gene therapy combined with transcatheter arterial chemoembolization for p53-positive and p53-negative hepatocellular carcinoma. Chin. J. Interv. Imaging Ther.7, 354–357 (2010).
  • Guan Y-S , LiuY , HeQet al. p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: One-year follow-up. World J. Gastroenterol.17(16), 2143–2149 (2011).
  • Yang Z , WangD , WangGet al. Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol.136(4), 625–630 (2010).
  • Kim KI , ChungHK , ParkJH , LeeYJ , KangJH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J. Gastroenterol.22(27), 6127–6134 (2016).
  • Yoon AR , HongJ , KimM , YunC-O. Hepatocellular carcinoma-targeting oncolytic adenovirus overcomes hypoxic tumor microenvironment and effectively disperses through both central and peripheral tumor regions. Sci. Rep.8(1), 2233 (2018).
  • Peng Y-F , ShiY-H , DingZ-Bet al. Alpha-fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy. PLoS One8(2), e53072 (2013).
  • Kim KI , ChungHK , ParkJH , LeeYJ , KangJH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J. Gastroenterol.22(27), 6127–6134 (2016).
  • Mao CY , HuaHJ , ChenP , YuDC , CaoJ , TengLS. Combined use of chemotherapeutics and oncolytic adenovirus in treatment of AFP-expressing hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int.8(3), 282–287 (2009).
  • Dhungel B , AndrzejewskiS , JayachandranAet al. Evaluation of the Glypican 3 promoter for transcriptional targeting of hepatocellular carcinoma. Gene Ther.25(2), 115–128 (2018).
  • Jiang H , GuoS , XiaoDet al. Arginine deiminase expressed in vivo, driven by human telomerase reverse transcriptase promoter, displays high hepatoma targeting and oncolytic efficiency. Oncotarget8(23), 37694–37704 (2017).
  • Hu H , QiuY , GuoMet al. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget6(2), 1079–1089 (2014).
  • Zhou G , LatchoumaninO , HebbardLet al. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv. Drug Deliv. Rev.134, 107–121 (2018).
  • Wang CY , LinBL , ChenCH. An aptamer targeting shared tumor-specific peptide antigen of MAGE-A3 in multiple cancers. Int. J. Cancer.138(4), 918–926 (2016).
  • Chen F , ZhangF , LiuY , CaiC. Simply and sensitively simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a label-free resonance light scattering sensor. Talanta.186, 473–480 (2018).
  • Cho Y , LeeYB , LeeJHet al. Modified AS1411 aptamer suppresses hepatocellular carcinoma by up-regulating galectin-14. PLoS One11(8), e0160822 (2016).
  • Babaei M , AbnousK , TaghdisiSMet al. Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine12(11), 1261–1279 (2017).
  • Xiao S , LiuZ , DengRet al. Aptamer-mediated gene therapy enhanced antitumor activity against human hepatocellular carcinoma in vitro and in vivo. J. Control. Rel.258, 130–145 (2017).
  • Jiang J , ChenH , YuCet al. The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles.(epidermal growth factor receptors and poly(lactic-co-glycolic acid))(Report). Nanomedicine10(12), 1863 (2015).
  • Baruteau J , WaddingtonSN , AlexanderIE , GissenP. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J. Inherit. Metab. Dis.40(4), 497–517 (2017).
  • Lundstrom K . Viral Vectors in gene therapy. Diseases (Basel, Switzerland)6(2), 42 (2018).
  • Jacobs F , GordtsSC , MuthuramuI , DeGeest B. The liver as a target organ for gene therapy: state of the art, challenges, and future perspectives. Pharmaceuticals (Basel)5(12), 1372–1392 (2012).
  • Braet F , WisseE. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol.1(1), 1 (2002).
  • Snoeys J , LievensJ , WisseEet al. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Ther.14(7), 604–612 (2007).
  • Szilagyi JF , BerrimanJ. Herpes simplex virus L particles contain spherical membrane-enclosed inclusion vesicles. J. Gen. Virol.75(Pt 7), 1749–1753 (1994).
  • Banerjee R . Liposomes: applications in medicine. J. Biomater. Appl.16(1), 3–21 (2001).
  • Chen H . Comparative observation of the recombinant adeno-associated virus 2 using transmission electron microscopy and atomic force microscopy. Microsc. Microanal.13(5), 384–389 (2007).
  • Tao N , GaoGP , ParrMet al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther.3(1), 28–35 (2001).
  • Merlin S , CannizzoES , BorroniEet al. A novel platform for immune tolerance induction in hemophilia A mice. Mol. Ther.25(8), 1815–1830 (2017).
  • Fu X , RiveraA , TaoL , DeGeest B , ZhangX. Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol. Ther.20(2), 339–346 (2012).
  • Lin Y , ZhangH , LiangJet al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc. Natl Acad. Sci. USA111(42), E4504–E4512 (2014).
  • Ke P-Y . The multifaceted roles of autophagy in flavivirus–host interactions. Int. J. Mol. Sci.19(12), 3940 (2018).
  • Chen A , ZhangY , MengGet al. Oncolytic measles virus enhances antitumour responses of adoptive CD8(+)NKG2D(+) cells in hepatocellular carcinoma treatment. Sci. Rep.7(1), 5170–5170 (2017).
  • Ong H-T , FederspielMJ , GuoCMet al. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J. Hepatol.59(5), 999–1006 (2013).
  • Schirrmacher V , van GoolS , StueckerW. Breaking therapy resistance: an update on oncolytic Newcastle disease virus for improvements of cancer therapy. Biomedicines7(3), 66 (2019).
  • Wei D , LiQ , WangX-Let al. Oncolytic Newcastle disease virus expressing chimeric antibody enhanced anti-tumor efficacy in orthotopic hepatoma-bearing mice. J. Exp. Clin. Cancer Res.34, 153–153 (2015).
  • Altomonte J , MarozinS , SchmidRM , EbertO. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol. Ther.18(2), 275–284 (2010).
  • McCarthy C , JayawardenaN , BurgaLN , BostinaM. Developing picornaviruses for cancer therapy. Cancers (Basel)11(5), 685 (2019).
  • Lundstrom K . Viral vector-based cancer immunotherapy. Austin Immunol.1(2), 1008 (2016).
  • Rosewell A , VetriniF , NgP. Helper-dependent adenoviral vectors. J. Genet. Syndr. Gene Ther. (Suppl. 5), 001 (2011).
  • Lee CS , BishopES , ZhangRet al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis.4(2), 43–63 (2017).
  • Gregory SM , NazirSA , MetcalfJP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol.6(3), 357–374 (2011).
  • Raper SE , YudkoffM , ChirmuleNet al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum. Gene Ther.13(1), 163–175 (2002).
  • Raper SE , ChirmuleN , LeeFSet al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab.80(1-2), 148–158 (2003).
  • Brunetti-Pierri N , NgT , IannittiDet al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum. Gene Ther.24(8), 761–765 (2013).
  • Brunetti-Pierri N , PalmerDJ , BeaudetAl , CareyKD , FinegoldM , NgP. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum. Gene Ther.15(1), 35–46 (2004).
  • Kim J et al. Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA. Biomaterials32(22), 5158–5166 (2011).
  • Leggiero E , AstoneD , CerulloVet al. PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice. Gene Ther.20(12), 1124–1130 (2013).
  • Choi JW , KimHA , NamK , NaY , YunCO , KimS. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy. J. Control. Rel.220(Pt B), 691–703 (2015).
  • Huang P , KakuH , ChenJet al. Potent antitumor effects of combined therapy with a telomerase-specific, replication-competent adenovirus (OBP-301) and IL-2 in a mouse model of renal cell carcinoma. Cancer Gene Ther.17(7), 484–491 (2010).
  • Kishimoto H , UrataY , TanakaN , FujiwaraT , HoffmanRM. Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses. Mol. Cancer Ther.8(11), 3001–3008 (2009).
  • Lin WH , YehSH , YangWJet al. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int. J. Cancer.132(6), 1451–1462 (2013).
  • ClinicalTrials.gov. Identifier NCT02293850 , Phase I study to evaluate the safety and efficacy of telomelysin (OBP-301) in patients with hepatocellular carcinoma (2014). https://clinicaltrials.gov/ct2/show/NCT02293850
  • Sangro B , MazzoliniG , RuizMet al. A Phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther.17, 837 (2010).
  • Kim YH , KimKT , LeeSJet al. Image-aided suicide gene therapy utilizing multifunctional hTERT-targeting adenovirus for clinical translation in hepatocellular carcinoma. Theranostics.6(3), 357–368 (2016).
  • Park JH , KimKI , LeeKCet al. Assessment of alpha-fetoprotein targeted HSV1-tk expression in hepatocellular carcinoma with in vivo imaging. Cancer Biother. Radiopharm.30(1), 8–15 (2015).
  • Chen Z-H , YuYP , ZuoZ-Het al. Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat. Biotechnol.35, 543 (2017).
  • El-Shemi AG , AshshiAM , NaYet al. Combined therapy with oncolytic adenoviruses encoding TRAIL and IL-12 genes markedly suppressed human hepatocellular carcinoma both in vitro and in an orthotopic transplanted mouse model. J. Exp. Clin. Can. Res.35, 74–74 (2016).
  • Galal El-Shemi A , MohammedAshshi A , OhEet al. Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Ther.25(1), 54–65 (2018).
  • Curiel DT . The development of conditionally replicative adenoviruses for cancer therapy. Clin. Cancer Res.6(9), 3395 (2000).
  • Hallenbeck PL , ChangY-N , HayCet al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther.10(10), 1721–1733 (1999).
  • Brand K , LöserP , ArnoldW , BartelsT , StraussM. Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Ther.5(10), 1363–1371 (1998).
  • O'Shea CC , SoriaC , BagusB , McCormickF. Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell.8(1), 61–74 (2005).
  • Heise C , Sampson-JohannesA , WilliamsA , McCormickF , Von HoffDD , KirnDH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med.3(6), 639–645 (1997).
  • Parato KA , SengerD , ForsythPAJ , BellJC. Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer.5(12), 965–976 (2005).
  • Makower D , RozenblitA , KaufmanHet al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin. Cancer Res.9(2), 693 (2003).
  • Xia Z-J , ChangJ-H , ZhangLet al. [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Chin. J. Cancer23, 1666–1670 (2004).
  • Garber K . China approves world's first oncolytic virus therapy for cancer treatment. J. Natl Cancer Inst.98(5), 298–300 (2006).
  • Andtbacka RHI , KaufmanHL , CollichioFet al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol.33(25), 2780–2788 (2015).
  • Uch R , GerolamiR , FaivreJet al. Hepatoma cell-specific ganciclovir-mediated toxicity of a lentivirally transduced HSV-TkEGFP fusion protein gene placed under the control of rat alpha-fetoprotein gene regulatory sequences. Cancer Gene Ther.10(9), 689–695 (2003).
  • Seo E , KimS , JhoEH. Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression. BMB Rep.42(4), 217–222 (2009).
  • Cantore A , RanzaniM , BartholomaeCCet al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci. Transl. Med.7(277), 277ra228 (2015).
  • Cantore A , MilaniM , AnnoniAet al. Liver-directed gene therapy for hemophilia B with immune stealth lentiviral vectors. Blood.130(Suppl 1), 605–605 (2017).
  • Levine BL , MiskinJ , WonnacottK , KeirC. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev.4, 92–101 (2017).
  • Guo X , JiangH , ShiBet al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front. Pharmacol.9, 1118–1118 (2018).
  • Milone MC , O'DohertyU. Clinical use of lentiviral vectors. Leukemia32(7), 1529–1541 (2018).
  • Kattenhorn LM , TipperCH , StoicaLet al. Adeno-associated virus gene therapy for liver disease. Hum. Gene Ther.27(12), 947–961 (2016).
  • Nienhuis AW , NathwaniAC , DavidoffAM. Gene therapy for hemophilia. Hum. Gene Ther.27(4), 305–308 (2016).
  • Colella P , RonzittiG , MingozziF. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev.8, 87–104 (2018).
  • Medicine JoG . Gene Therapy Clinical Trials Worldwide (2017). www.abedia.com/wiley/
  • Chandler RJ , SandsMS , VendittiCP. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum. Gene Ther.28(4), 314–322 (2017).
  • Srivastava A . In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol.21, 75–80 (2016).
  • Hurlbut GD , ZieglerRJ , NietupskiJBet al. Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol. Ther.18(11), 1983–1994 (2010).
  • Li C , NarkbunnamN , SamulskiRJet al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther.19(3), 288–294 (2012).
  • Chirmule N , XiaoW , TrunehAet al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J. Virol.74(5), 2420–2425 (2000).
  • Sun J , ShaoW , ChenXet al. An observational study from long-term AAV re-administration in two hemophilia dogs. Mol. Ther. Methods Clin. Dev.10, 257–267 (2018).
  • Majowicz A , SalasD , ZabaletaNet al. Successful repeated hepatic gene delivery in mice and non-human primates achieved by sequential administration of AAV5(ch) and AAV1. Mol. Ther.25(8), 1831–1842 (2017).
  • Salas D , KwikkersKL , ZabaletaNet al. Immunoadsorption enables successful rAAV5-mediated repeated hepatic gene delivery in nonhuman primates. Blood Adv.3(17), 2632–2641 (2019).
  • Buning H , SrivastavaA. Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol. Ther. Methods Clin. Dev.12, 248–265 (2019).
  • Sayroo R , NolascoD , YinZet al. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells. Gene Ther.23(1), 18–25 (2016).
  • Horner M , KaufmannB , CotugnoGet al. A chemical switch for controlling viral infectivity. Chem. Commun. (Camb).50(71), 10319–10322 (2014).
  • Markusic DM , HerzogRW , AslanidiGVet al. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol. Ther.18(12), 2048–2056 (2010).
  • Wang L , MorizonoH , LinJet al. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome. Mol. Genet. Metab.105(2), 203–211 (2012).
  • Lisowski L , DaneAP , ChuKet al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature.506(7488), 382–386 (2014).
  • Paulk NK , PekrunK , ZhuEet al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol. Ther.26(1), 289–303 (2018).
  • Glushakova LG , LisankieMJ , EruslanovEBet al. AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells. Mol. Genet. Metab.98(3), 289–299 (2009).
  • Ma S , SunJ , GuoYet al. Combination of AAV-TRAIL with miR-221-Zip therapeutic strategy overcomes the resistance to TRAIL induced apoptosis in liver cancer. Theranostics7(13), 3228–3242 (2017).
  • Yuan L , ZhaoH , ZhangL , LiuX. The efficacy of combination therapy using adeno-associated virus-mediated co-expression of apoptin and interleukin-24 on hepatocellular carcinoma. Tumour Biol.34(5), 3027–3034 (2013).
  • Breitbach CJ , BellJC , HwangT-H , KirnDH , BurkeJ. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncol. Virother.4, 25–31 (2015).
  • Chan WM , McFaddenG. Oncolytic Poxviruses. Annu. Rev. Virol.1(1), 119–141 (2014).
  • Cho E , RyuEJ , JiangFet al. Preclinical safety evaluation of hepatic arterial infusion of oncolytic poxvirus. Drug Des. Devel. Ther.12, 2467–2474 (2018).
  • Sae-im J . SillaJen remains confident about Pexa-Vec's value, despite trial failure. Korea Biomed. Rev. (2019).
  • Lundstrom K . Self-replicating RNA viral vectors in vaccine development and gene therapy. Future Virol.11(5), 345–356 (2016).
  • Lundstrom K . Self-Replicating RNA viruses for RNA therapeutics. Molecules (Basel).23(12) (2018).
  • Lai WF , WongWT. Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol.36(7), 713–728 (2018).
  • Varshosaz J , FarzanM. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J. Gastroenterol.21(42), 12022–12041 (2015).
  • Durymanov M , ReinekeJ. Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front. Pharmacol.9, 971–971 (2018).
  • Zamboni CG , KozielskiKL , VaughanHJet al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J. Control. Rel.263, 18–28 (2017).
  • Liu CH , ChernGJ , HsuFFet al. A multifunctional nanocarrier for efficient TRAIL-based gene therapy against hepatocellular carcinoma with desmoplasia in mice. Hepatology67(3), 899–913 (2018).
  • El Sharkawi FZ , EwaisSM , FahmyRH , RashedLA. PTEN and TRAIL genes loaded zein nanoparticles as potential therapy for hepatocellular carcinoma. J. Drug Target.25(6), 513–522 (2017).
  • Yang E , LiX , JinN. The chimeric multi-domain proteins mediating specific DNA transfer for hepatocellular carcinoma treatment. Cancer Cell Int.16, 80–80 (2016).
  • Hu BG , LiuLP , ChenGGet al. Therapeutic efficacy of improved alpha-fetoprotein promoter-mediated tBid delivered by folate-PEI600-cyclodextrin nanopolymer vector in hepatocellular carcinoma. Exp. Cell Res.324(2), 183–191 (2014).
  • Misra SK , RayT , OstadhosseinF , KimB , RayPS , PanD. Carotenoid nanovector for efficient therapeutic gene knockdown of transcription factor FOXC1 in liver cancer. Bioconjug. Chem.27(3), 594–603 (2016).
  • Fitamant J , KottakisF , BenhamoucheSet al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep.10(10), 1692–1707 (2015).
  • Chen R , XuX , TaoY , QianZ , YuY. Exosomes in hepatocellular carcinoma: a new horizon. J. Cell. Commun. Signal.17(1), 1–1 (2019).
  • Abudoureyimu M , ZhouH , ZhiYet al. Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell. Prolif.52(2), e12541 (2019).
  • Zhang Y , LiL , YuJet al. Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials35(14), 4390–4400 (2014).
  • Yang N , LiS , LiGet al. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget8(2), 3683–3695 (2016).
  • Mathiyalagan P , SahooS. Exosomes-based gene therapy for microRNA delivery. Methods Mol. Biol.1521, 139–152 (2017).
  • Santangelo L , BattistelliC , MontaldoC , CitarellaF , StrippoliR , CicchiniC. Functional roles and therapeutic applications of exosomes in hepatocellular carcinoma. Biomed. Res. Int.2017, 2931813–2931813 (2017).
  • Tai Y-L , ChenK-C , HsiehJ-T , ShenT-L. Exosomes in cancer development and clinical applications. Cancer Sci.109(8), 2364–2374 (2018).
  • Lou G , SongX , YangFet al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol.8, 122–122 (2015).
  • Liang G , KanS , ZhuY , FengS , FengW , GaoS. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomedicine13, 585–599 (2018).
  • Liang G , KanS , ZhuY , FengS , FengW , GaoS. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. of Nanomedicine13, 585–599 (2018).
  • Wang J , LiW , LuZet al. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale9(40), 15598–15605 (2017).
  • Saga K , KanedaY. Virosome presents multimodel cancer therapy without viral replication. Biomed. Res. Int.2013, 764706–764706 (2013).
  • Zakaria MK , KhanI , ManiP , ChattopadhyayP , SarkarDP , SinhaS. Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer14, 582 (2014).
  • Carroll D , BeumerKJ. Genome engineering with TALENs and ZFNs: repair pathways and donor design. Methods69(2), 137–141 (2014).
  • Ho BX , LohSJH , ChanWK , SohBS. In vivo genome editing as a therapeutic approach. Int. J. Mol. Sci.19(9), 2721 (2018).
  • Cong L , RanFA , CoxDet al. Multiplex genome engineering using CRISPR/Cas systems. Science.339(6121), 819 (2013).
  • Joung JK , SanderJD. TALE Ns: a widely applicable technology for targeted genome editin. Nat. Rev. Mol. Cell. Biol.14(1), 49–55 (2013).
  • Doudna JA , CharpentierE. The new frontier of genome engineering with CRISPR-Cas9. Science346(6213), 1258096 (2014).
  • Lieber MR . The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem.79, 181–211 (2010).
  • Jasin M , RothsteinR. Repair of strand breaks by homologous recombination. CSH Perspect. Biol.5(11), a012740–a012740).
  • Helleday T , LoJ , van GentDC , EngelwardBP. DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair6(7), 923–935 (2007).
  • Dominguez AA , LimWA , QiLS. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell. Biol.17, 5 (2015).
  • Ran FA , HsuPD , LinC-Yet al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell154(6), 1380–1389 (2013).
  • White MK , KhaliliK. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget7(11), 12305–12317 (2016).
  • Gebler C , LohoffT , Paszkowski-RogaczMet al. Inactivation of cancer mutations utilizing CRISPR/Cas9. J. Natl Cancer. Inst.109(1), djw183 (2016).
  • Raghunath A , SundarrajK , ArfusoF , SethiG , PerumalE. Dysregulation of Nrf2 in hepatocellular carcinoma: role in cancer progression and chemoresistance. Cancers10(12), 481 (2018).
  • Lohitesh K , ChowdhuryR , MukherjeeS. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int.18, 44–44 (2018).
  • Bialk P , WangY , BanasK , KmiecEB. Functional gene knockout of NRF2 increases chemosensitivity of human lung cancer A549 cells in vitro and in a xenograft mouse model. Mol. Ther. Oncolytics11, 75–89 (2018).
  • Zhao H , EguchiS , AlamA , MaD. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.312(2), L155–L162 (2016).
  • Global Burden of Disease Liver Cancer C . The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol.3(12), 1683–1691 (2017).
  • Schinzari V , BarnabaV , PiconeseS. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin. Microbiol. Infect.21(11), 969–974 (2015).
  • Sung W-K , ZhengH , LiSet al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet.44, 765 (2012).
  • Scott T , MoyoB , NicholsonSet al. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci. Rep.7(1), 7401 (2017).
  • Schiwon M , Ehrke-SchulzE , OswaldAet al. One-vector system for multiplexed CRISPR/Cas9 against hepatitis B virus cccDNA utilizing high-capacity adenoviral vectors. Mol. Ther. Nucleic. Acids.12, 242–253 (2018).
  • He Z-Y , ZhangY-G , YangY-Het al. In vivo ovarian cancer gene therapy using CRISPR-Cas9. Hum. Gene Ther.29(2), 223–233 (2018).
  • Zhang X , LiY , MaYet al. Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J. Exp. Clin. Cancer Res.37(1), 216–216 (2018).
  • Wang X , WuB , ZhongZ. Downregulation of YAP inhibits proliferation, invasion and increases cisplatin sensitivity in human hepatocellular carcinoma cells. Oncol. Lett.16(1), 585–593 (2018).
  • Han J , XieC , PeiTet al. Deregulated AJAP1/β-catenin/ZEB1 signaling promotes hepatocellular carcinoma carcinogenesis and metastasis. Cell Death Dis.8(4), e2736–e2736 (2017).
  • Qu W , WenX , SuK , GouW. MiR-552 promotes the proliferation, migration and EMT of hepatocellular carcinoma cells by inhibiting AJAP1 expression. J. Cell. Mol. Med.23(2), 1541–1552 (2019).
  • Bowman KR , KimJH , LimCS. Narrowing the field: cancer-specific promoters for mitochondrially-targeted p53-BH3 fusion gene therapy in ovarian cancer. J. Ovarian Res.12(1), 38 (2019).
  • Lu P , ReddBowman KE , BrownSMet al. p53-Bad: a novel tumor suppressor/proapoptotic factor hybrid directed to the mitochondria for ovarian cancer gene therapy. Mol. Pharm.16(8), 3386–3398 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.