937
Views
5
CrossRef citations to date
0
Altmetric
Review

Polymeric Micelles for Anticancer Drug Delivery

, & ORCID Icon
Pages 613-635 | Received 22 Jan 2020, Accepted 18 Aug 2020, Published online: 15 Sep 2020

References

  • Patel J , AmrutiyaJ , BhattP , JaviaA , JainM , MisraA. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul.35(2), 204–217 (2018).
  • Moses MA , BremH , LangerR. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell4(5), 337–341 (2003).
  • Doppalapudi S , JainA , DombAJ , KhanW. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin. Drug Deliv.13(6), 891–909 (2016).
  • Nishiyama N , KataokaK. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Therapeutics112(3), 630–648 (2006).
  • Kim S , ShiY , KimJY , ParkK , ChengJ-X. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Del.7(1), 49–62 (2010).
  • Wan X , BeaudoinJJ , VinodNet al. Co-delivery of paclitaxel and cisplatin in poly (2-oxazoline) polymeric micelles: implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials192, 1–14 (2019).
  • Gabizon AA . Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Advanced Drug Del. Rev.16(2–3), 285–294 (1995).
  • Maeda H . SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Advanced Drug Del. Rev.46(1), 169–185 (2001).
  • Biswas S , KumariP , LakhaniPM , GhoshB. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharmaceutical Sci.83, 184–202 (2016).
  • Wiradharma N , ZhangY , VenkataramanS , HedrickJL , YangYY. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today4(4), 302–317 (2009).
  • Cagel M , TesanFC , BernabeuEet al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur. J. Pharmaceut. Biopharmaceut.113, 211–228 (2017).
  • Kulthe SS , ChoudhariYM , InamdarNN , MouryaV. Polymeric micelles: authoritative aspects for drug delivery. Designed Monom. Polym.15(5), 465–521 (2012).
  • Gao C , YanD. Hyperbranched polymers: from synthesis to applications. Progress Polym. Sci.29(3), 183–275 (2004).
  • Jiang G , ChenW , XiaW. Environmental-sensitive hyperbranched polymers as drug carriers. Designed Monom. Polym.11(2), 105–122 (2008).
  • Zhang P , SunF , LiuS , JiangS. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Rel.244, 184–193 (2016).
  • Almeida M , MagalhãesM , VeigaF , FigueirasA. Poloxamers, poloxamines and polymeric micelles: definition, structure and therapeutic applications in cancer. J. Polym. Res.25(1), 31 (2018).
  • Sun X , WangG , ZhangHet al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano12(6), 6179–6192 (2018).
  • Jin X , ZhouB , XueL , SanW. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother.69, 388–395 (2015).
  • Murgia S , FaddaP , ColafemminaGet al. Characterization of the Solutol® HS15/water phase diagram and the impact of the Δ 9-tetrahydrocannabinol solubilization. J. Colloid Interface Sci.390(1), 129–136 (2013).
  • Nagarajan R , BarryM , RuckensteinE. Unusual selectivity in solubilization by block copolymer micelles. Langmuir2(2), 210–215 (1986).
  • Patel SK , LavasanifarA , ChoiP. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with increasing PCL content for two hydrophobic cucurbitacin drugs. Biomacromolecules10(9), 2584–2591 (2009).
  • Cui Y , SuiJ , HeMet al. Reduction-degradable polymeric micelles decorated with parg for improving anticancer drug delivery efficacy. ACS Applied Mater. Interfac.8(3), 2193–2203 (2016).
  • Lavasanifar A , SamuelJ , SattariS , KwonGS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm. Res.19(4), 418–422 (2002).
  • Zhang Y , ZhouJ , YangCet al. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. International J. Nanomed.11, 1119 (2016).
  • Winsor P . Hydrotropy, solubilisation and related emulsification processes. Transact. Faraday Soc.44, 376–398 (1948).
  • Landauer J , McconnellH. A study of molecular complexes formed by aniline and aromatic nitrohydrocarbons1, 2. J. Am. Chem. Soc.74(5), 1221–1224 (1952).
  • Cho YW , LeeJ , LeeSC , HuhKM , ParkK. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Rel.97(2), 249–257 (2004).
  • Huh KM , LeeSC , ChoYW , LeeJ , JeongJH , ParkK. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Rel.101(1–3), 59–68 (2005).
  • Ahmad Z , ShahA , SiddiqM , KraatzH-B. Polymeric micelles as drug delivery vehicles. RSC Advan.4(33), 17028–17038 (2014).
  • Owen SC , ChanDP , ShoichetMS. Polymeric micelle stability. Nano Today7(1), 53–65 (2012).
  • Wang S , ZhouY , ZhuangBet al. Star-shaped amphiphilic block polyurethane with pentaerythritol core for a hydrophobic drug delivery carrier. Polymer International65(5), 551–558 (2016).
  • Yoncheva K , CallejaP , AgüerosMet al. Stabilized micelles as delivery vehicles for paclitaxel. International J. Pharmaceut.436(1–2), 258–264 (2012).
  • Zhao Y , AlakhovaDY , ZhaoX , BandV , BatrakovaEV , KabanovAV. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. Nanomed. Nanotechnol. Biol. Med.24, 102124 (2020).
  • Rösler A , VandermeulenGW , KlokH-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Deliv. Rev.64, 270–279 (2012).
  • Chang H , LiuY , ShiM , LiuZ , LiuZ , JiangJ. Photo-induced dynamic association of coumarin pendants within amphiphilic random copolymer micelles. Colloid Polym. Sci.293(3), 823–831 (2015).
  • Shi Y , LammersT , StormG , HenninkWE. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol. Biosci.17(1), 1600160 (2017).
  • Banerjee A , ChatterjeeK , MadrasG. Enzymatic degradation of polymers: a brief review. Materials Sci. Technol.30(5), 567–573 (2014).
  • Watanabe M , KawanoK , YokoyamaM , OpanasopitP , OkanoT , MaitaniY. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. International J. Pharmaceut.308(1–2), 183–189 (2006).
  • Yoo HS , LeeEA , ParkTG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Rel.82(1), 17–27 (2002).
  • Talelli M , ImanM , VarkouhiAKet al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials31(30), 7797–7804 (2010).
  • Xiong X-B , FalamarzianA , GargSM , LavasanifarA. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J. Control. Rel.155(2), 248–261 (2011).
  • Lai TC , ChoH , KwonGS. Reversibly core cross-linked polymeric micelles with pH-and reduction-sensitivities: effects of cross-linking degree on particle stability, drug release kinetics, and anti-tumor efficacy. Polymer. Chem.5(5), 1650–1661 (2014).
  • Yin T , WangP , LiJet al. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials34(18), 4532–4543 (2013).
  • Grande R , CarvalhoAJ. Compatible ternary blends of chitosan/poly (vinyl alcohol)/poly (lactic acid) produced by oil-in-water emulsion processing. Biomacromolecules12(4), 907–914 (2011).
  • Yang M , WangP , HuangC-Y , KuMS , LiuH , GogosC. Solid dispersion of acetaminophen and poly (ethylene oxide) prepared by hot-melt mixing. International J. Pharmaceut.395(1), 53–61 (2010).
  • Kedar U , PhutaneP , ShidhayeS , KadamV. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med.6(6), 714–729 (2010).
  • Gaucher G , DufresneM-H , SantVP , KangN , MaysingerD , LerouxJ-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Rel.109(1), 169–188 (2005).
  • Rapoport N . Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress Polymer Sci.32(8), 962–990 (2007).
  • Ding H , WangX , ZhangS , LiuX. Applications of polymeric micelles with tumor targeted in chemotherapy. J. Nanoparticle Res.14(11), 1–13 (2012).
  • Moretton MA , TairaC , FlorSet al. Novel nelfinavir mesylate loaded d-α-tocopheryl polyethylene glycol 1000 succinate micelles for enhanced pediatric anti HIV therapy: in vitro characterization and in vivo evaluation. Coll. Surfaces B123, 302–310 (2014).
  • Held P . Rapid critical micelle concentration (CMC) determination using fluorescence polarization. BioTek Application Note (2014). https://www.biotek.com/resources/application-notes/rapid-critical-micelle-concentration-cmc-determination-using-fluorescence-polarization/
  • Hruby M , FilippovSK , PanekJet al. Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol. Biosci.10(8), 916–924 (2010).
  • Bussche EV , De DeeneY , DubruelP , VergoteK , SchachtE , DeWagter C. The use of static light scattering for the structure analysis of radiosensitive polymer gels: a literature survey. Presented at: Journal of Physics: Conference Series. 3( 1), 180–183 (2004).
  • Van Butsele K , SibretP , FustinC-Aet al. Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci.329(2), 235–243 (2009).
  • Rajeshwar BR , GatlaA , RajeshG , ArjunN , SwapnaM. Polymeric micelles: a nanoscience technology. Am. J. Pharm. Res.1(4), 351–363 (2011).
  • Gerlier D , ThomassetN. Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods94(1–2), 57–63 (1986).
  • Matsumura Y . Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Advanced Drug Deliv. Rev.63(3), 184–192 (2011).
  • Cabral H , MatsumotoY , MizunoKet al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnol.6(12), 815–823 (2011).
  • Bae YH . Drug targeting and tumor heterogeneity. J. Control. Rel.133(1), 2 (2009).
  • Chen S , FlorinasS , TeitgenAet al. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity. Sci. Technol. Advanced Materials18(1), 666–680 (2017).
  • Li X , YuY , JiQ , QiuL. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomed. Nanotechnol. Biol. Med.11(1), 175–184 (2015).
  • Ojugo AS , McsheehyPM , McintyreDJet al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed.12(8), 495–504 (1999).
  • Woraphatphadung T , SajomsangW , RojanarataT , NgawhirunpatT , TonglairoumP , OpanasopitP. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech19(3), 991–1000 (2018).
  • Luo Y , YinX , YinXet al. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics11(4), 176 (2019).
  • Rijcken CJ , SnelCJ , SchiffelersRM , Van NostrumCF , HenninkWE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials28(36), 5581–5593 (2007).
  • Deng L , RenJ , LiJet al. Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy. Nanoscale7(21), 9655–9663 (2015).
  • Ji G , YangJ , ChenJ. Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. International J. Pharmaceut.466(1–2), 314–320 (2014).
  • Dai Y , ChenX , ZhangX. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym. Chem.10(1), 34–44 (2019).
  • Wang Y , YinT , SuZet al. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res.11(7), 3710–3721 (2018).
  • Kim TH , MountCW , DulkenBWet al. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model. Mol. Pharmaceut.9(1), 135–143 (2012).
  • Zhang X , ChenD , BaSet al. Poly (l-histidine) based copolymers: effect of the chemically substituted l-histidine on the physio-chemical properties of the micelles and in vivo biodistribution. Colloid. Surfaces B140, 176–184 (2016).
  • Anelli PL , LattuadaL , LorussoV , SchneiderM , TournierH , UggeriF. Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents. Magnetic Resonance Materials in Physics, Biol. Med.12(2–3), 114–120 (2001).
  • Yang H , MaoH , WanZet al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials34(36), 9124–9133 (2013).
  • Lu Y , ParkK. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. International J. Pharmaceut.453(1), 198–214 (2013).
  • Wang Y , BalajiR , QuirkRP , MatticeWL. Detection of the rate of exchange of chains between micelles formed by diblock copolymers in aqueous solution. Polymer Bulletin28(3), 333–338 (1992).
  • Yang L , WuX , LiuF , DuanY , LiS. Novel biodegradable polylactide/poly (ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm. Res.26(10), 2332–2342 (2009).
  • Farokhzad OC , ChengJ , TeplyBAet al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA103(16), 6315–6320 (2006).
  • Von Hoff DD , MitaMM , RamanathanRKet al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clinical Cancer Res.22(13), 3157–3163 (2016).
  • Autio KA , GarciaJA , AlvaASet al. A Phase II study of BIND-014 (PSMA-targeted docetaxel nanoparticle) administered to patients with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol.34(Suppl. 2), 233–233 (2016).
  • Kato K , ChinK , YoshikawaTet al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs30(4), 1621–1627 (2012).
  • Hamaguchi T , MatsumuraY , SuzukiMet al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer92(7), 1240–1246 (2005).
  • Hamaguchi T , KatoK , YasuiHet al. A Phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer97(2), 170–176 (2007).
  • Harada M , BobeI , SaitoHet al. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300. Cancer Sci.102(1), 192–199 (2011).
  • Mukai H , KogawaT , MatsubaraN , NaitoY , SasakiM , HosonoA. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Invest. New Drugs35(3), 307–314 (2017).
  • Uchino H , MatsumuraY , NegishiTet al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer93(6), 678–687 (2005).
  • Plummer R , WilsonR , CalvertHet al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer104(4), 593–598 (2011).
  • Doi T , HamaguchiT , ShitaraKet al. NC-6004 Phase I study in combination with gemcitabine for advanced solid tumors and population PK/PD analysis. Cancer Chemother. Pharmacol.79(3), 569–578 (2017).
  • Ueno T , EndoK , HoriKet al. Assessment of antitumor activity and acute peripheral neuropathy of 1, 2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). International J. Nanomed.9, 3005 (2014).
  • Cabral H , KataokaK. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Rel.190, 465–476 (2014).
  • Dabholkar RD , SawantRM , MongaytDA , DevarajanPV , TorchilinVP. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. International J. Pharmaceut.315(1–2), 148–157 (2006).
  • Gaucher G , SatturwarP , JonesM-C , FurtosA , LerouxJ-C. Polymeric micelles for oral drug delivery. Eur. J. Pharmaceut. Biopharmaceut.76(2), 147–158 (2010).
  • Tu L , WangG , QiN , WuW , ZhangW , FengJ. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. International J. Pharmaceutics578, 119105 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.