100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanodelivery of Nitazoxanide: Impact on the Metabolism of Taenia Crassiceps Cysticerci Intracranially Inoculated in Mice

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 329-339 | Received 20 Feb 2020, Accepted 15 May 2020, Published online: 03 Jun 2020

References

  • Maurice J . Of pigs and people – WHO prepares to battle cysticercosis. Lancet384(9943), 571–572 (2014).
  • Garcia HH , DelBrutto OH. Cysticercosis Working Group in Peru. Antiparasitic treatment of neurocysticercosis – the effect of cyst destruction in seizure evolution. Epilepsy Behav.76, 158–162 (2017).
  • Devleesschauwer B , AllepuzA , DermauwVet al. Taenia solium in Europe: still endemic? Acta Trop. 165, 96–99 (2017).
  • Weka R , KamaniJ , CoganTet al. Overview of Taenia solium cysticercosis in West Africa. Acta Trop.190, 329–338 (2019).
  • García HH , EvansCAW , NashTEet al. Current consensus guidelines for treatment of neurocysticercosis. Clin. Microbiol. Rev.15(4), 747–756 (2002).
  • Palomares-Alonso F , PiliadoJC , PalenciaGet al. Efficacy of nitazoxanide, tizoxanide and tizoxanide/albendazole sulphoxide combination against Taenia crassiceps cysts. J. Antimicrob. Chemother.59(2), 212–218 (2007).
  • Leonardi D , EcheniqueC , LamasMCet al. High efficacy of albendazole-PEG 6000 in the treatment of Toxocara canis larva migrans infection. J. Antimicrob. Chemother.64(2), 375–378 (2009).
  • Gonzalez MA , RamírezRigo MV , GonzalezVidal NL. Praziquantel systems with improved dissolution rate obtained by high pressure homogenization. Mater. Sci. Eng. C Mater. Biol. Appl.93, 28–35 (2018).
  • Ali H , SinghSK. Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther. Deliv.7(1001), 691–709 (2016).
  • Islan GA , DuránM , CacicedoMLet al. Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop. 170, 16–42 (2017).
  • Taghipour-Sabzevar V , SharifiT , MoghaddamMM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther. Deliv.10(8), 527–550 (2019).
  • Arrúa EC , SeremetaKP , BedogniGRet al. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of Chagas disease: a review. Acta Trop.198, 105080 (2019).
  • Scherließ R . Future of nanomedicines for treating respiratory diseases. Expert Opin. Drug Deliv.16(1), 59–68 (2019).
  • Ashour DS . Ivermectin: from theory to clinical application. Int. J. Antimicrob. Agents54(2), 134–142 (2019).
  • Puttappa N , SureshKumar R , KuppusamyGet al. Nano-drug delivery strategies in the treatment of plasmodium infection. Acta Trop.195, 103–114 (2019).
  • White AC Jr . Nitazoxanide: an important advance in anti-parasitic therapy. Am. J. Trop. Med. Hyg.68(4), 382–383 (2003).
  • White AC Jr . Nitazoxanide: a new broad spectrum antiparasitic agent. Expert Rev. Anti. Infect. Ther.2(1), 43–49 (2004).
  • Lateef M , ZargarSA , KhanARet al. Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide. Int. J. Infect. Dis.12(1), 80–82 (2008).
  • Singh PK , AjayA , KushwahaSet al. Towards novel antifilarial drugs: challenges and recent developments. Future Med. Chem.2(2), 251–283 (2010).
  • Rossignol JF . Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public. Health.9(3), 227–230 (2016).
  • Rossignol JF . Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res.110, 94–103 (2014).
  • Dang W , XuL , MaBet al. Nitazoxanide inhibits human norovirus replication and synergizes with ribavirin by activation of cellular antiviral response. Antimicrob. Agents Chemother.62(11), e00707–e00718 (2018).
  • Miyamoto Y , EckmannL. Drug development against the major diarrhea-causing parasites of the small intestine, Cryptosporidium and Giardia. Front. Microbiol.6, 1208 (2015).
  • Dhawan AK , BisherwalK , GandhiVet al. Successful treatment of cutaneous leishmaniasis with nitazoxanide. Indian J. Dermatol. Venereol. Leprol.81(6), 644–646 (2015).
  • Gilles HM , HoffmanPS. Treatment of intestinal parasitic infections: a review of nitazoxanide. Trends Parasitol.18(3), 95–97 (2002).
  • Vaz AJ , NunesCM , PiazzaRMet al. Immunoblot with cerebroespinal fluid from patients with neurocysticercosis using antigen from cysticerci of Taenia solium and Taenia crassiceps. Am. J. Trop. Med. Hyg.57(3), 354–357 (1997).
  • Vinaud MC , LinoJunior RS , BezerraJCB. Taenia crassiceps organic acids detected in cysticerci. Exp. Parasitol.116(4), 335–339 (2007).
  • Lightowlers MW . Fact or hypothesis: Taenia crassiceps as a model for Taenia solium, and the S3Pvac vaccine. Parasite Immunol.32(11–12), 701–709 (2010).
  • Real D , HoffmannS , LeonardiDet al. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS ONE.13(12), e0207625 (2018).
  • Jurišić Dukovski B , JuretićM , BračkoDet al. Functional ibuprofen-loaded cationic nanoemulsion: development and optimization for dry eye disease treatment. Int. J. Pharm.25(576), 118979 (2020).
  • Game MD , SakarkarDM. Simultaneous spectrophotometric estimation of nitazoxanide and ofloxacin in tablets. Indian J. Pharm. Sci.73(1), 70–74 (2011).
  • Yuksel N , KanikAE , BaykaraT. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int. J. Pharm.209(1–2), 57–67 (2000).
  • Zhang Y , HuoM , ZhouJet al. DDSolver: an Add-In program for modeling and comparison of drug dissolution profiles. J. AAPS12(3), 263–271 (2010).
  • Matos-Silva H , ReciputtiBP , PaulaECet al. Experimental encephalitis caused by Taenia crassiceps cysticerci in mice. Arq. Neuropsiq.70(4), 287–292 (2012).
  • Vinaud MC , FerreiraCS , LinoJunior RSet al. Taenia crassiceps: fatty acids oxidation and alternative energy source in in vitro cysticerci exposed to antihelminthic drugs. Exp. Parasitol.122(3), 208–211 (2009).
  • Fraga CM , CostaTL , BezerraJCet al. Taenia crassiceps: host treatment alters glycolisis and tricarboxilic acid cycle in cysticerci. Exp. Parasitol.130(2), 146–151 (2012).
  • Calvo P , Remuñán-LópezC , Vila-JatoJLet al. Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym. Sci.275, 46–53 (1997).
  • Đorđević SM , CekićND , SavićMMet al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm.493(1–2), 40–54 (2015).
  • Anderson VR , CurranMP. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs67(13), 1947–1967 (2007).
  • El-Kowrany SI , ElGhaffar AEA , ShoheibZSet al. Evaluation of nitazoxanide as a novel drug for the treatment of acute and chronic toxoplasmosis. Acta Trop.195, 145–154 (2019).
  • Ruiz-Olmedo MI , Gallegos-PerezJL , Calderon-GonzalezKGet al. Sensitive high performance liquid chromatographic assay for nitazoxanide metabolite in plasma. Pharmazie64(7), 419–422 (2009).
  • Suresh K , MannavaMK , NangiaA. Cocrystals and alloys of nitazoxanide: enhanced pharmacokinetics. Chem. Commun.52(22), 4223–4226 (2016).
  • Jara MO , Catalan-FigueroaJ , LandinMet al. Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Deliv. Transl. Res.8(6), 1797–1806 (2018).
  • Seremeta KP , ArrúaEC , OkulikNBet al. Development and characterization of benznidazole nano- and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf. B Biointerfaces 177, 169–177 (2019).
  • Anton N , VandammeTF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm. Res.28(5), 978–985 (2011).
  • Erdoğar N , AkkınS , BilensoyE. Nanocapsules for drug delivery: an updated review of the last decade. Recent Pat. Drug Deliv. Formul.12(4), 252–266 (2018).
  • Hafner A , LovrićJ , VoinovichDet al. Melatonin-loaded lecithin/chitosan nanoparticles: physicochemical characterisation and permeability through Caco-2 cell monolayers. Int. J. Pharm.381(2), 205–213 (2009).
  • Ceña V , JátivaP. Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine13(13), 1513–1516 (2018).
  • Gandhi H , SharmaAK , MahantSet al. Recent advancements in brain tumor targeting using magnetic nanoparticles. Ther. Deliv.11(2), 97–112 (2020).
  • Rodrigues SF , FielLA , ShimadaALet al. Lipid-core nanocapsules act as a drug shuttle through the blood brain barrier and reduce glioblastoma after intravenous or oral administration. J. Biomed. Nanotechnol.12(5), 986–1000 (2016).
  • Montenegro L , ParentiC , TurnaturiRet al. Resveratrol-loaded lipid nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics9(4), E58 (2017).
  • Abbasalipourkabir R , FallahM , SedighiFet al. Nanocapsulation of nitazoxanide in solid lipid nanoparticles as a new drug delivery system and in vitro release study. J. Biol. Sci.16(4), 120–127 (2016).
  • Omwenga EO , HenselA , ShitandiAet al. Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E. coli Top 10 biosensor. Colloids Surf. B Biointerfaces.164, 125–133 (2018).
  • Neves AR , LúcioM , MartinsSet al. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomedicine8, 177–187 (2013).
  • Yukuyama MN , GhisleniDD , PintoTJet al. Nanoemulsion: process selection and application in cosmetics – a review. Int. J. Cosmet. Sci.38, 13–24 (2016).
  • Fontana MC , CoradiniK , PohlmannARet al. Nanocapsules prepared from amorphous polyesters: effect on the physicochemical characteristics, drug release, and photostability. J. Nanosci. Nanotechnol.10(5), 3091–3099 (2010).
  • Sonvico F , CagnaniA , RossiAet al. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm.324(1), 67–73 (2006).
  • Azadi S , AshrafiH , AzadiA. Mathematical modeling of drug release from swellable polymeric nanoparticles. J. Appl. Pharm. Sci.7(04), 125–133 (2017).
  • Zhang L , YangL , ZhangXet al. Sustained therapeutic efficacy of budesonide-loaded chitosan swellable microparticles after lung delivery: influence of in vitro release, treatment interval and dose. J. Control. Rel.283, 163–174 (2018).
  • Nasareth JM , FragaCM , LimaNFet al. In vivo treatment with nitazoxanide induces anaerobic metabolism in experimental intraperitoneal cysticercosis. Parasitol. Res.116(11), 3037–3041 (2017).
  • Lima NF , PicançoGA , AlvesDSMMet al. Oral nitazoxanide treatment of experimental neurocysticercosis induces gluconeogenesis in Taenia crassiceps cysticerci. Acta Trop.190, 361–364 (2019).
  • Tielens AGM Van Hellemond JJ . Unusual aspects of metabolism in flatworm parasites. In: Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology.MauleAG, MarksNJ ( Eds). CABI, London, UK, 387–407 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.