170
Views
1
CrossRef citations to date
0
Altmetric
Review

The Role of single- and multi-walled Carbon Nanotube in Breast Cancer Treatment

, , , & ORCID Icon
Pages 653-672 | Received 22 Feb 2020, Accepted 28 Apr 2020, Published online: 01 Jun 2020

References

  • Fitzmaurice C , AkinyemijuTF , AlLami FHet al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol.4(11), 1553–1568 (2018).
  • Girish C , VijayalakshmiP , MenthamR , RaoCB , NamaS. A review on breast cancer. Int. J. Pharm. Bio. Sc.4(2), 47–54 (2014).
  • Mehra NK , PalakurthiS. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov. Today21(4), 585–597 (2016).
  • Fritze A , HensF , KimpflerA , SchubertR , Peschka-SüssR. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. BBA-BIOMEMBRANES.1758(10), 1633–1640 (2006).
  • Biris AS , BoldorD , PalmerJet al. Nanophotothermolysis of multiple scattered cancer cells with carbon nanotubes guided by time-resolved infrared thermal imaging. J. Biomed. Opt.14(2), 021007 (2009).
  • Rocha M , ChavesN , BáoS. Nanobiotechnology for breast cancer treatment. In: Breast Cancer – From Biology to Medicine.Van PhucP ( Ed.). (2017).
  • Du M , OuyangY , MengFet al. Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine14(13), 1771–1786 (2019).
  • Kothari IR , MazumdarS , SharmaS , ItaliyaK , MittalA , ChitkaraD. Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther. Deliv.10(4), 227–240 (2019).
  • De Volder MF , TawfickSH , BaughmanRH , HartAJ. Carbon nanotubes: present and future commercial applications. Science339(6119), 535–539 (2013).
  • Martel R , SchmidtT , SheaH , HertelT , AvourisP. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett.73(17), 2447–2449 (1998).
  • Tajabadi M . Application of carbon nanotubes in breast cancer therapy. In: Drug Research. (2019).
  • Casais-Molina M , CabC , CantoG , MedinaJ , TapiaA. Carbon nanomaterials for breast cancer treatment. Application of Nanomaterials in Bioengineering2018, 2058613 (2018).
  • Bor G , MatAzmi ID , YaghmurA. Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther. Deliv.10(2), 113–132 (2019).
  • Thess A , LeeR , NikolaevPet al. Crystalline ropes of metallic carbon nanotubes. Science273(5274), 483–487 (1996).
  • Iijima S . Helical microtubules of graphitic carbon. Nature354(6348), 56 (1991).
  • Vardharajula S , AliSZ , TiwariPMet al. Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed.7, 5361 (2012).
  • Niyogi S , HamonM , HuHet al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res.35(12), 1105–1113 (2002).
  • Bekyarova E , NiY , MalarkeyEBet al. Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol.1(1), 3–17 (2005).
  • Klumpp C , KostarelosK , PratoM , BiancoA. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes1758(3), 404–412 (2006).
  • Madani SY , TanA , DwekM , SeifalianAM. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int. J. Nanomed.7, 905 (2012).
  • Dyke CA , TourJM. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem. European J.10(4), 812–817 (2004).
  • Ghanbari H , de MelA , SeifalianAM. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int. J. Nanomed.6, 775 (2011).
  • Kidane AG , BurriesciG , EdirisingheM , GhanbariH , BonhoefferP , SeifalianAM. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater.5(7), 2409–2417 (2009).
  • Saeed LM , MahmoodM , PyrekSJet al. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol.34(11), 1188–1199 (2014).
  • Kayat J , GajbhiyeV , TekadeRK , JainNK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomed-Nanotechnol.7(1), 40–49 (2011).
  • Shvedova A , CastranovaV , KisinEet al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environm. Health Part A66(20), 1909–1926 (2003).
  • Kagan V , TyurinaY , TyurinVet al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett.165(1), 88–100 (2006).
  • Monteiro-Riviere NA , NemanichRJ , InmanAO , WangYY , RiviereJE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett.155(3), 377–384 (2005).
  • Manna SK , SarkarS , BarrJet al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett.5(9), 1676–1684 (2005).
  • Bottini M , BrucknerS , NikaKet al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett.160(2), 121–126 (2006).
  • Madani SY , MandelA , SeifalianAM. A concise review of carbon nanotube's toxicology. Nano Rev.4(1), 21521 (2013).
  • Suter R , MarcumJA. The molecular genetics of breast cancer and targeted therapy. Biologics1(3), 241 (2007).
  • Wiechec E . Implications of genomic instability in the diagnosis and treatment of breast cancer. Expert Rev. Mol. Diagn.11(4), 445–453 (2011).
  • Wiechec E , OvergaardJ , KjeldsenE , HansenLL. Chromosome 1q25. 3 copy number alterations in primary breast cancers detected by multiplex ligation-dependent probe amplification and allelic imbalance assays and its comparison with fluorescent in situ hybridization assays. Cell. Oncol.36(2), 113–120 (2013).
  • Baell JB , HuangDC. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem. Pharmacol.64(5–6), 851–863 (2002).
  • Ott M , GogvadzeV , OrreniusS , ZhivotovskyB. Mitochondria, oxidative stress and cell death. Apoptosis12(5), 913–922 (2007).
  • Earnshaw WC , MartinsLM , KaufmannSH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem.68(1), 383–424 (1999).
  • Farsinejad S , GheisaryZ , SamaniSE , AlizadehAM. Mitochondrial targeted peptides for cancer therapy. Tumour Biol.36(8), 5715–5725 (2015).
  • Hu LY , SunZG , WenYMet al. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience169(3), 1046–1062 (2010).
  • Patlolla A , KnightenB , TchounwouP. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn. Dis.20(1 Suppl. 1), S1 (2010).
  • Elgrabli D , Abella-GallartS , RobidelF , RogerieuxF , BoczkowskiJ , LacroixG. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology253(1–3), 131–136 (2008).
  • Tabet L , BussyC , AmaraNet al. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health, A72(2), 60–73 (2008).
  • Di Giorgio ML , DiBucchianico S , RagnelliAM , AimolaP , SantucciS , PomaA. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat. Res./Genet. Toxicol. Environmen. Mutagen.722(1), 20–31 (2011).
  • Yehia HN , DraperRK , MikoryakCet al. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotech.5(1), 8 (2007).
  • Najafi A , MojtahedzadehM , AhmadiA , RamezaniM , ShariatmoharariR , HazratiE. Rapidly changing tachyarrhythmia in acute stroke. Basic Clin. Neurosci.4(2), 169 (2013).
  • Wang X , GuoJ , ChenTet al. Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol. In Vitro26(6), 799–806 (2012).
  • Ünlü A , MeranM , DincB , KaratepeN , BektaşM , GünerFS. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes. Mol. Biol. Rep.45(4), 523–531 (2018).
  • Han Y-g , XuJ , LiZ-g , RenG-g , YangZ. In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neurotoxicology33(5), 1128–1134 (2012).
  • Kavosi A , NoeiSHG , MadaniSet al. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Scientific Reports8(1), 8375 (2018).
  • Shaik AS , ShaikAP , BammidiVK , AlFaraj A. Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Toxicol. Mechan. Methods29(4), 233–243 (2019).
  • Shvedova AA , KisinER , MercerRet al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol.289(5), L698–L708 (2005).
  • Porter DW , HubbsAF , MercerRRet al. Mouse pulmonary dose-and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology269(2–3), 136–147 (2010).
  • Pauluhn J . Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicological Sci.113(1), 226–242 (2009).
  • Warheit DB , LaurenceBR , ReedKL , RoachDH , ReynoldsGA , WebbTR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological Sci.77(1), 117–125 (2004).
  • Han SG , AndrewsR , GairolaCG. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhalation Toxicol.22(4), 340–347 (2010).
  • Sadeghi K , HamishehkarH , NajmeddinFet al. High-dose amikacin for achieving serum target levels in critically ill elderly patients. Infection Drug Resist.11, 223 (2018).
  • Morimoto Y , HirohashiM , KobayashiNet al. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology6(7), 766–775 (2012).
  • Li Z , HuldermanT , SalmenRet al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect.115(3), 377–382 (2006).
  • Helfenstein M , MiragoliM , RohrSet al. Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology253(1–3), 70–78 (2008).
  • Urankar RN , LustRM , MannEet al. Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Part. Fibre Toxicol.9(1), 38 (2012).
  • Hosseinpour M , AzimiradV , AlimohammadiM , ShahabiP , SadighiM , NejadGG. The cardiac effects of carbon nanotubes in rat. BioImpacts6(2), 79 (2016).
  • Ema M , ImamuraT , SuzukiH , KobayashiN , NayaM , NakanishiJ. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul. Toxicol. Pharm.63(2), 188–195 (2012).
  • Liang G , YinL , ZhangJet al. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J. Toxicol. Environ. Health, A73(7), 463–470 (2010).
  • Shang S , YangS-Y , LiuZ-M , YangX. Oxidative damage in the kidney and brain of mice induced by different nano-materials. Front. Biol.10(1), 91–96 (2015).
  • Fujita K , FukudaM , EndohSet al. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol. Lett.257, 23–37 (2016).
  • Jia G , WangH , YanLet al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol.39(5), 1378–1383 (2005).
  • Akinoglu E , OzbilginK , SonmezPKet al. Biocompatibility of vertically aligned multi-walled carbon nanotube scaffolds for human breast cancer cell line MDA-MB-231. Progress Biomater.6(4), 189–196 (2017).
  • Liapis V , LabrinidisA , ZinonosIet al. Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma. Cancer Lett.357(1), 160–169 (2015).
  • Han E-S , MullerFL , PérezVIet al. The in vivo gene expression signature of oxidative stress. Physiol. Genomics34(1), 112–126 (2008).
  • Benvidi A , TezerjaniMD , JahanbaniS , ArdakaniMM , MoshtaghiounSM. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs. Talanta147, 621–627 (2016).
  • Ahn SG , BaeSJ , YoonCet al. Chemosensitivity to doxorubicin of ER-positive/HER2-negative breast cancers with high 21-gene recurrence score: a study based on in vitro chemoresponse assay. PloS ONE12(11), e0187679 (2017).
  • Jeyamohan P , HasumuraT , NagaokaY , YoshidaY , MaekawaT , KumarDS. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomed8, 2653 (2013).
  • Ghosh M , DasPK. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surf. B. Biointerf.142, 367–376 (2016).
  • Ji J , LiuM , MengYet al. Experimental study of magnetic multi-walled carbon nanotube-doxorubicin conjugate in a lymph node metastatic model of breast cancer. Med. Sci. Monitor22, 2363 (2016).
  • Al Faraj A , ShaikAP , ShaikAS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomed.10, 157 (2015).
  • Storey A , ThomasM , KalitaAet al. Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature393(6682), 229 (1998).
  • Taghavi S , HashemNiaA , MosaffaF , AskarianS , AbnousK , RamezaniM. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B. Biointerfaces140, 28–39 (2016).
  • Jones SN , RoeAE , DonehowerLA , BradleyA. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature378(6553), 206 (1995).
  • Pai C-L , ChenY-C , HsuC-Y , SuH-L , LaiP-S. Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells. J. Biomed. Nanotechnol.12(4), 619–629 (2016).
  • Neves LF , KraisJJ , Van RiteBD , RameshR , ResascoDE , HarrisonRG. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology24(37), 375104 (2013).
  • Arora S , KumarR , KaurHet al. Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells. J. Biomed. Nanotechnol.10(12), 3601–3609 (2014).
  • Vassilev LT , VuBT , GravesBet al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303(5659), 844–848 (2004).
  • Ren X , LinJ , WangXet al. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes. International J. Nanomed.12, 7885 (2017).
  • Oh Y , JinJ-O , OhJ. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology28(12), 125101 (2017).
  • Wang L , ShiJ , JiaXet al. NIR-/pH-responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharm. Res.30(11), 2757–2771 (2013).
  • Graham EG , WailesEM , Levi-PolyachenkoNH. Multi-walled carbon nanotubes inhibit breast cancer cell migration. J. Biomed. Nanotechnol.12(2), 308–319 (2016).
  • Li Y , LiX , DoughtyAet al. Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer. Nanomed-Nanotechnol.18, 44–53 (2019).
  • Jia Y , WengZ , WangCet al. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncol. Lett.13(1), 206–214 (2017).
  • Trédan O , GalmariniCM , PatelK , TannockIF. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99(19), 1441–1454 (2007).
  • Mohseni-Dargah M , Akbari-BirganiS , MadadiZ , SaghatchiF , KaboudinB. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine14(8), 1033–1047 (2019).
  • Chen P , KanehiraK , SonezakiS , TaniguchiA. Detection of cellular response to titanium dioxide nanoparticle agglomerates by sensor cells using heat shock protein promoter. Biotechnol. Bioeng.109(12), 3112–3118 (2012).
  • Oraki Kohshour M , MirzaieS , ZeinaliMet al. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des.83(3), 259–265 (2014).
  • Nima ZA , MahmoodM , KarmakarAet al. Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J. Biomed. Opt.18(5), 055003 (2013).
  • Xiao Y , GaoX , TaratulaOet al. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer9(1), 351 (2009).
  • Ahmad MZ , AhmadJ , ZafarSet al. Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther. Deliv.11(1), 851–868 (2020).
  • Liu D , ZhangQ , WangJ , FanL , ZhuW , CaiD. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Die Pharmazie74(2), 83–90 (2019).
  • Al Faraj A , ShaikAS , RatemiE , HalwaniR. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Rel.225, 240–251 (2016).
  • Shao W , PaulA , RodesL , PrakashS. A new carbon nanotube-based breast cancer drug delivery system: preparation and in vitro analysis using paclitaxel. Cell Biochem. Biophys.71(3), 1405–1414 (2015).
  • McKeown S . Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br. J. Radiol.87(1035), 20130676 (2014).
  • Guise CP , MowdayAM , AshoorzadehAet al. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer33(2), 80 (2014).
  • Brannon-Peppas L , BlanchetteJO. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Rev.64, 206–212 (2012).
  • Karmakar A , BrattonSM , DervishiEet al. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomed6, 1045 (2011).
  • Mohammadi M , SalmasiZ , HashemiM , MosaffaF , AbnousK , RamezaniM. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm.485(1–2), 50–60 (2015).
  • Chen H , MaX , LiZet al. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed. Pharmacother.66(5), 334–338 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.