670
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeted drug-delivery Systems in the Treatment of Rheumatoid Arthritis: Recent Advancement and Clinical Status

, , , , ORCID Icon &
Pages 269-284 | Received 20 Mar 2020, Accepted 24 Apr 2020, Published online: 20 May 2020

References

  • Guo Q , WangY , XuD , NossentJ , PavlosNJ , XuJ. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res.6(1), 1–14 (2018).
  • Global RA Network . About Arthritis and RA. https://globalranetwork.org/project/disease-info/
  • India . Arthritis. www.arthritis-india.com/rheumatoid-arthritis.html
  • WHO . Chronic rheumatic conditions. www.who.int/chp/topics/rheumatic/en/
  • McInnes IB , SchettG. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med.365(23), 2205–2219 (2011).
  • Liao KP , AlfredssonL , KarlsonEW. Environmental influences on risk for rheumatoid arthritis. Curr. Opin. Rheumatol.21(3), 279–283 (2009).
  • McInnes IB , SchettG. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet389(10086), 2328–2337 (2017).
  • Alunno A , CarubbiF , GiacomelliR , GerliR. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatol.1(1), 1–13 (2017).
  • Prosperi D , ColomboM , ZanoniI , GranucciF. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin. Immunol.34, 61–67 (2017).
  • Nissen SE , YeomansND , SolomonDHet al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med.375(26), 2519–2529 (2016).
  • Wilsdon TD , HillCL. Managing the drug treatment of rheumatoid arthritis. Aust. Prescr.40(2), 51–58 (2017).
  • Ayhan E , KesmezacarH , AkgunI. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J. Orthop.5(3), 351 (2014).
  • Fragoulis GE , McinnesIB , SiebertS. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatol.58, i43–i54 (2019).
  • ClinicalTrials.gov identifier: NCT03437473. https://clinicaltrials.gov/ct2/show/NCT03437473
  • ClinicalTrials.gov identifier: NCT00126724. https://clinicaltrials.gov/ct2/show/NCT00126724
  • ClinicalTrials.gov identifier: NCT01881308. https://clinicaltrials.gov/ct2/show/NCT01881308
  • ClinicalTrials.gov identifier: NCT00908089. https://clinicaltrials.gov/ct2/show/NCT00908089
  • Singhvi G , HejmadyS , RapalliVK , DubeySK , DubeyS. Nanocarriers for topical delivery in psoriasis. Deliv. Drugs2, 75–96; Elsevier (2020).
  • Yang M , FengX , DingJ , ChangF , ChenX. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Rel.252, 108–124 (2017).
  • Singhvi G , RapalliVK , KowthavarapuVK , DubeySK. Alginate: drug delivery and application. Alginates Apple Acad. Press646 (2019).
  • Rapalli VK , SinghviG , DubeySK , GuptaG , ChellappanDK , DuaK. Emerging landscape in psoriasis management: from topical application to targeting biomolecules. Biomed. Pharmacother.106, 707–713 (2018).
  • Girdhar V , PatilS , BanerjeeS , SinghviG. Nanocarriers for drug delivery: mini review. Curr. Nanomed.8(2), 88–99 (2018).
  • Mostafavi SH . Nano-sized drug delivery. J. Mol. Pharm. Org. Process Res.1(3), 1–2 (2013).
  • Levick JR . Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum.24(12), 1550–1560 (1981).
  • Wardwell PR , ForstnerMB , BaderRA. Investigation of the cytokine response to NF-κB decoy oligonucleotide coated polysaccharide based nanoparticles in rheumatoid arthritis in vitro models. Arthritis Res. Ther.17(1), 310 (2015).
  • Quan L , ZhangY , CrielaardBJet al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano8(1), 458–466 (2014).
  • Naor D , NedvetzkiS. CD44 in rheumatoid arthritis. Arthritis Res. Ther.5(3), 105–115 (2003).
  • Nagayoshi R , NagaiT , MatsushitaKet al. Effectiveness of anti-folate receptor β antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid arthritis synovial macrophages. Arthritis Rheum.52(9), 2666–2675 (2005).
  • Jubeli E , MoineL , Vergnaud-GauduchonJ , BarrattG. E-selectin as a target for drug delivery and molecular imaging. J. Control. Rel.158(2), 194–206 (2012).
  • Delgado M , AbadC , MartinezCet al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J. Mol. Med.80(1), 16–24 (2002).
  • Wilder RL . Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann. Rheum. Dis.61(2), 96–99 (2002).
  • Nogueira E , LagerF , LeRoux Det al. Enhancing methotrexate tolerance with folate tagged liposomes in arthritic mice. J. Biomed. Nanotechnol.11(12), 2243–2252 (2015).
  • Rapalli VK , KhosaA , SinghviG , GirdharV , JainR , DubeySK. Application of QbD principles in nanocarrier-based drug delivery systems. In: Pharmaceutical Quality by Design.BegS, HasnainMDS ( Eds). Academic Press, MA, USA, 255–296 (2019).
  • Singhvi G , HansN , ShivaN , KumarDubey S. Xanthan gum in drug delivery applications. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications. HasnainMd S, NayakAK ( Eds). Academic Press, MA, USA, 121–144 (2019).
  • Gorantla S , WaghuleT , RapalliVKet al. Advanced hydrogels based drug delivery systems for ophthalmic delivery. Recent Pat. Drug Deliv. Formul.doi: 10.2174/187221131466620010809485114 (2020).
  • Jain S , KrishnaCherukupalli S , MahmoodAet al. Emerging nanoparticulate systems: preparation techniques and stimuli responsive release characteristics. J. Appl. Pharm. Sci.9(08), 130–143 (2019).
  • Rapalli VK , GorantlaS , WaghuleTet al. Nanotherapies for the treatment of age-related macular degeneration (amd) disease: recent advancements and challenges. Recent Pat. Drug Deliv. Formul. doi:10.2174/187221131466620011709591714 (2020).
  • Sultana F , NeogMK , RasoolMK. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf B.155, 349–365 (2017).
  • Poh S , ChelvamV , KelderhouseLEet al. Folate-conjugated liposomes target and deliver therapeutics to immune cells in a rat model of rheumatoid arthritis. Nanomedicine12(20), 2441–2451 (2017).
  • Zeb A , QureshiOS , YuCHet al. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int. J. Pharm.525(1), 92–100 (2017).
  • Neog MK , RasoolM. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur. J. Pharm. Biopharm.133, 162–175 (2018).
  • Hua S , DiasTH , PepperallD-G , YangY. Topical loperamide-encapsulated liposomal gel increases the severity of inflammation and accelerates disease progression in the adjuvant-induced model of experimental rheumatoid arthritis. Front. Pharmacol.8, 503 (2017).
  • Meka RR , VenkateshaSH , AcharyaB , MoudgilKD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine14(11), 1455–1469 (2019).
  • Nogueira E , FreitasJ , LoureiroAet al. Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids Surf B.155, 459–465 (2017).
  • Hu L , LuoX , ZhouSet al. Neutrophil-mediated delivery of dexamethasone Palmitate-Loaded Liposomes Decorated with a Sialic Acid Conjugate for Rheumatoid Arthritis Treatment. Pharm. Res.36(7), 97 (2019).
  • Xu X-L , LiW-S , WangX-Jet al. Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale10, 2923 (2018).
  • Hao F , LeeRJ , ZhongLet al. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics9, 18 (2019).
  • Wang Q , JiangH , LiYet al. Targeting NF-κB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials122, 10–22 (2017).
  • Wang X , FengY , FuJet al. A lipid micellar system loaded with dexamethasone palmitate alleviates rheumatoid arthritis. AAPS Pharm. Sci. Tech.20(8), 1–10 (2019).
  • Zhang N , XuC , LiNet al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv.25(1), 1182–1191 (2018).
  • Wang Q , LiY , ChenX , JiangH , ZhangZ , SunX. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Res.12(2), 421–428 (2019).
  • Mohammadi-Samani S , ZojajiS , Entezar-AlmahdiE. Piroxicam loaded solid lipid nanoparticles for topical delivery: preparation, characterization and in vitro permeation assessment. J. Drug Deliv. Sci. Technol.47, 427–433 (2018).
  • Gu Y , TangX , YangM , YangD , LiuJ. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int. J. Pharm.554, 235–244 (2019).
  • Janakiraman K , KrishnaswamiV , SethuramanV , RajendranV , KandasamyR. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci.9(8), 1781–1796 (2019).
  • Sakdiset P , AmnuaikitT , PichayakornW , PinsuwanS. Formulation development of ethosomes containing indomethacin for transdermal delivery. J. Drug Deliv. Sci. Technol.52, 760–768 (2019).
  • Song H , WenJ , LiHet al. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int. J. Nanomed.14, 3177–3188 (2019).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9), 688–701 (2006).
  • Wang D , MillerSC , LiuXM , AndersonB , WangXS , GoldringSR. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther.9(1), R2 (2007).
  • Li C , LiH , WangQet al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J. Control. Rel.246, 133–141 (2017).
  • Seetharaman G , KallarAR , VijayanVM , MuthuJ , SelvamS. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J. Colloid Interface Sci.492, 61–72 (2017).
  • Vasvani S , KulkarniP , RawtaniD. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol.151, 1012–1029 (2019).
  • Oh EJ , ParkK , KimKSet al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Rel.141(1), 2–12 (2010).
  • Schluep T , HwangJ , RodgersK , OliverJC. α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int. J. Nanomedicine3(3), 359 (2008).
  • Yang M , DingJ , FengXet al. Scavenger receptor-mediated targeted treatment of collagen-induced arthritis by dextran sulfate-methotrexate prodrug. Theranostics7(1), 97–105 (2017).
  • Goel N , StephensS. Certolizumab pegol. MAbs2(2), 137–147 (2010).
  • Sundy JS , GansonNJ , KellySJet al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum.56(3), 1021–1028 (2007).
  • Prasad LK , O'MaryH , CuiZ. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine10(13), 2063–2074 (2015).
  • Wang Q , JiangJ , ChenW , JiangH , ZhangZ , SunX. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release230, 64–72 (2016).
  • Wang Y , LiuZ , LiTet al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics9, 3 (2019).
  • Mohammadi M , LiY , AbebeDGet al. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J. Control. Rel.244, 269–279 (2016).
  • Akbarzadeh A , Rezaei-SadabadyR , DavaranSet al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett.8(1), 1–9 (2013).
  • Garg A , TisdaleAW , HaidariE , KokkoliE. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int. J. Pharm.366(1–2), 201–210 (2009).
  • Jia M , DengC , LuoJet al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int. J. Pharm.540(1–2), 57–64 (2018).
  • Sharma G , SainiMK , ThakurKet al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine12(6), 615–638 (2017).
  • Kumar Sarwa K , RudrapalM , MazumderB. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv.22(8), 1043–1052 (2015).
  • Sarwa KK , MazumderB , RudrapalM , VermaVK. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv.22(5), 638–646 (2015).
  • Abd El-Alim SH , KassemAA , BashaM , SalamaA. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int. J. Pharm.563, 293–303 (2019).
  • Van Dommelen SM , VaderP , LakhalSet al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Rel.161(2), 635–644 (2012).
  • Liu D , TanW , ZhouWet al. Synovial fibroblasts-derived exosomes overexpressing microrna-106b inhibits chondrocyte proliferation and migration via down-regulation of PDK4 in rheumatoid arthritis. Lancet (2019).
  • Zheng J , ZhuL , IokIn I , ChenY , JiaN , ZhuW. Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. Int. Immunopharmacol.78, 105985 (2020).
  • Kulkarni P , RawtaniD , BarotT. Formulation and optimization of long acting dual niosomes using Box-Behnken experimental design method for combinative delivery of ethionamide and D-cycloserine in tuberculosis treatment. colloids surfaces A physicochem. Eng. Asp.565, 131–142 (2019).
  • Paradkar M , VaghelaS. Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery. Drug Deliv. Lett.8(2), 159–168 (2018).
  • Abidin L , MujeebM , ImamSS , AqilM , KhuranaD. Enhanced transdermal delivery of luteolin via non-ionic surfactant-based vesicle: quality evaluation and anti-arthritic assessment. Drug Deliv.23(3), 1079–1084 (2016).
  • Albuquerque J , MouraCC , SarmentoB , ReisS. Molecules solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules20, 11103–11118 (2015).
  • Hinge N , PandeyMM , SinghviGet al. Nanomedicine advances in cancer therapy. In: Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering.CL, ToitD, KumarP, ChoonaraYE, PillayV ( Eds). Woodhead Publishing, Sawston, Cambridge, 219–253 (2020).
  • Zhou M , HouJ , ZhongZ , HaoN , LinY , LiC. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv.25(1), 716–722 (2018).
  • Aldayel AM , O'MaryHL , ValdesSAet al. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J. Control. Rel.283, 280–289 (2018).
  • Arora R , KuhadA , KaurIP , ChopraK. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain19(7), 940–952 (2015).
  • Waghule T , RapalliVK , SinghviGet al. Voriconazole loaded nanostructured lipid carriers based topical delivery system: qbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol.52, 303–315 (2019).
  • Mahmood A , RapalliVK , WaghuleTet al. UV spectrophotometric method for simultaneous estimation of betamethasone valerate and tazarotene with absorption factor method: application for in-vitro and ex-vivo characterization of lipidic nanocarriers for topical delivery. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.235, 118310 (2020).
  • Rapalli VK , KaulV , GorantlaSet al. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc.224, 117392 (2020).
  • Garg NK , TyagiRK , SinghBet al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int. J. Pharm.499(1–2), 301–320 (2016).
  • Singhvi G , BanerjeeS , KhosaA. Lyotropic liquid crystal nanoparticles. In: Organic Materials as Smart Nanocarriers for Drug Delivery.GrumezescuAM ( Ed.). William Andrew Publishing, CN, USA, 471–517 (2018).
  • Singhvi G , ManchandaP , KrishnaRapalli V , KumarDubey S , GuptaG , DuaK. MicroRNAs as biological regulators in skin disorders. Biomed. Pharmacother.108, 996–1004 (2018).
  • Li Q , CaoJ , LiZ , ChuX. Cubic liquid crystalline gels based on glycerol monooleate for intra-articular injection. AAPS Pharm. Sci. Tech.9(2), 858–865 (2018).
  • Salah S , MahmoudAA , KamelAO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv.24(1), 846–856 (2017).
  • Vigderman L , ZubarevER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev.65(5), 663–676 (2013).
  • Rawtani D , AgrawalYK. Study the interaction of DNA with halloysite nanotube-gold nanoparticle based composite. J. Bionanosci.6(2), 95–98 (2012).
  • Kirdaite G , LeonavicieneL , BradunaiteRet al. Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res. Vet. Sci.124, 32–37 (2019).
  • Gul A , KunwarB , MazharMet al. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int. Immunopharmacol.59, 310–317 (2018).
  • Lee H , LeeM-Y , BhangSHet al. Hyaluronate À gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano8(5), 4790–4798 (2014).
  • Waghule T , SinghviG , DubeySKet al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother.109, 1249–1258 (2019).
  • Shende P , SalunkeM. Transepidermal microneedles for co-administration of folic acid with methotrexate in the treatment of rheumatoid arthritis. Biomed. Phys. Eng. Express.5, 25023 (2019).
  • Yao W , TaoC , ZouJet al. Flexible two-layer dissolving and safing microneedle transdermal of neurotoxin: a biocomfortable attempt to treat Rheumatoid Arthritis. Int. J. Pharm.563, 91–100 (2019).
  • Joshi N , YanJ , LevySet al. Towards an arthritis flare-responsive drug delivery system. Nat. Commun.9(1), 1–11 (2018).
  • Yoshihara Y , NakamuraH , ObataKet al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis.59(6), 455–461 (2000).
  • ClinicalTrials.gov identifier: NCT00241982. https://clinicaltrials.gov/ct2/show/NCT00241982
  • Yoon DH , BinSI , ChanSKCet al. Effectiveness and tolerability of transdermal buprenorphine patches: a multicenter, prospective, open-label study in Asian patients with moderate to severe chronic musculoskeletal pain. BMC Musculoskelet. Disord.18(1), 337 (2017).
  • ClinicalTrials.gov identifier: NCT00524160. https://clinicaltrials.gov/ct2/show/NCT00524160
  • ClinicalTrials.gov identifier: NCT00760669. https://clinicaltrials.gov/ct2/show/NCT00760669
  • ClinicalTrials.gov identifier: NCT02030028. https://clinicaltrials.gov/ct2/show/NCT02030028
  • ClinicalTrials.gov identifier: NCT03082573. https://clinicaltrials.gov/ct2/show/NCT03082573
  • ClinicalTrials.gov identifier: NCT02434757. https://clinicaltrials.gov/ct2/show/NCT02434757
  • ClinicalTrials.gov identifier: NCT02818361. https://clinicaltrials.gov/ct2/show/NCT02818361
  • ClinicalTrials.gov identifier: NCT01966718. https://clinicaltrials.gov/ct2/show/NCT01966718
  • ClinicalTrials.gov identifier: NCT03215407. https://clinicaltrials.gov/ct2/show/NCT03215407
  • ClinicalTrials.gov identifier: NCT03445715. https://clinicaltrials.gov/ct2/show/NCT03445715
  • ClinicalTrials.gov identifier: NCT01851278. https://clinicaltrials.gov/ct2/show/NCT01851278
  • ClinicalTrials.gov identifier: NCT03337165. https://clinicaltrials.gov/ct2/show/NCT03337165
  • ClinicalTrials.gov identifier: NCT00617032. https://clinicaltrials.gov/ct2/show/NCT00617032
  • ClinicalTrials.gov identifier: NCT01352858. https://clinicaltrials.gov/ct2/show/NCT01352858
  • ClinicalTrials.gov identifier: NCT00209859. https://clinicaltrials.gov/ct2/show/NCT00209859
  • ClinicalTrials.gov identifier: NCT00244153. https://clinicaltrials.gov/ct2/show/NCT00244153
  • Singhvi G , DubeySK , PatilS , GirdharV. Nanocarriers for topical drug delivery: approaches and advancements. Nanosci. Nanotechnology-Asia9(3), 329–336 (2018).
  • Singhvi G , ManchandaP , HansN , DubeySK , GuptaG. Microsponge: an emerging drug delivery strategy. Drug Dev. Res.80(2), 200–208 (2019).
  • Škalko-Basnet N . Biologics: the role of delivery systems in improved therapy. Biol. Targets Ther.8, 107–114 (2014).
  • Tharmavaram M , PandeyG , RawtaniD. Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci.261, 82–101 (2018).
  • Rawtani D , AgrawalYK , PrajapatiP. Interaction behavior of DNA with halloysite nanotube-silver nanoparticle-based composite. Bionanoscience3(1), 73–78 (2013).
  • Kulkarni P , RawtaniD. Application of Box-Behnken design in the preparation, optimization, and in vitro evaluation of self-assembly-based tamoxifen- and doxorubicin-loaded and dual drug-loaded niosomes for combinatorial breast cancer treatment. J. Pharm. Sci.108(8), 2643–2653 (2019).
  • Singhvi G , RapalliVK , NagpalS , DubeySK , SahaRN. Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in medicine (Volume 1).DaimaHK, PNN, RanjanS, Dasgupta, N, LichtfouseE ( Eds). Springer International Publishing, Cham, Switzerland, 51–83 (2020).
  • Joseph E , SinghviG. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In: Nanomaterials for Drug Delivery and Therapy.GrumezescuAM ( Ed.). William Andrew Publishing, CN, USA, 91–116 (2019).
  • Singhvi G , PatilS , GirdharV , ChellappanDK , GuptaG , DuaK. 3D-printing: an emerging and a revolutionary technology in pharmaceuticals. Panminerva Med.60(4), 170–173 (2018).
  • Mahmood A , SinghviG , ManchandaPet al. Applications of 3D printing for the advancement of oral dosage forms. In: Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering.CL, ToitD, KumarP, ChoonaraYE, PillayY ( Eds). Woodhead Publishing, Sawston, Cambridge, 39–57 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.