152
Views
0
CrossRef citations to date
0
Altmetric
Review

Microencapsulation of Coenzyme Q10 and Bile Acids Using Ionic Gelation Vibrational Jet Flow Technology for Oral Delivery

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 791-805 | Received 30 Jun 2020, Accepted 09 Nov 2020, Published online: 23 Nov 2020

References

  • Orive G , PedrazJL. Highlights and trends in cell encapsulation. In: Therapeutic Applications of Cell Microencapsulation.PedrazJL, OriveG ( Eds). Springer, NY, USA, 1–4 (2010).
  • Zanger UM . Introduction to drug metabolism. doi:10.1002/9783527630905.ch10 (2012).
  • Jovic J , MilijasevicB , VukmirovicSet al. Pharmacokinetic and drug absorption profiles of the anti-hyperglycaemic agent gliclazide in oral tissue-targeted microcapsules in rats. Scripta Medical.51(1), 15–20 (2020).
  • Odiba A , UkegbuC , AnunobiO , ChukwunonyelumI , EsemonuJ. Making drugs safer: improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol. Rev.5(2), 183–194 (2016).
  • Mooranian A , NegruljR , Al-SallamiHSet al. Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment. J. Microencapsul.32(2), 151–156 (2015).
  • Fan J , DeLannoy IaM. Pharmacokinetics. Biochem. Pharmacol.87(1), 93–120 (2014).
  • Pavlovic N , Golocorbin-KonS , EthanicMet al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol.9, 1283 (2018).
  • Mikov M , BoniNS , Al-SalamiH , KuhajdaK , KevresanS , FawcettJP. Pharmacokinetics and hypoglycaemic effect of 3 alpha, 7 alpha-dihydroxy-12-oxo-5beta-cholanate (MKC) in diabetic rat. Febs J.273, 210–210 (2006).
  • Mikov M , BoniNS , Al-SalamiHet al. Bioavailability and hypoglycemic activity of the semisynthetic bile acid salt, sodium 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate, in healthy and diabetic rats. Eur. J. Drug Metab. Pharmacokinet32(1), 7–12 (2007).
  • Al-Salami H , ButtG , TuckerI , MikovM. Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in vitro in healthy and diabetic rats treated with probiotics. Methods Find Exp. Clin. Pharmacol.30(2), 107–113 (2008).
  • Al-Salami H , ButtG , TuckerIet al. Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats. Eur. J. Drug Metab. Pharmacokinet.34(1), 43–50 (2009).
  • Robertson D . First pass metabolism. Nurse Prescribing15(6), 303–305 (2017).
  • Petrangolini G , RonchiM , FrattiniE , DeCombarieu E , AllegriniP , RivaA. A New Food-grade Coenzyme Q10 formulation improves bioavailability: single and repeated pharmacokinetic studies in healthy volunteers. Curr. Drug Deliv.16(8), 759–767 (2019).
  • Lopez-Lluch G , DelPozo-Cruz J , Sanchez-CuestaA , Cortes-RodriguezAB , NavasP. Bioavailability of Coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition57, 133–140 (2019).
  • Luo M , YangX , RuanX , XingW , ChenM , MuF. Enhanced stability and oral bioavailability of folic acid-dextran-Coenzyme q10 nanopreparation by high-pressure homogenization. J. Agric. Food Chem.66(37), 9690–9696 (2018).
  • Crane FL , HatefiY , LesterRL , WidmerC. Isolation of a quinone from beef heart mitochondria. BBA Biochim. Biophys. Acta25(C), 220–221 (1957).
  • Molyneux SL , FlorkowskiCM , GeorgePMet al. Coenzyme Q10. J. Am. College Cardiol.52(18), 1435–1441 (2008).
  • Tran M , MitchellTM , KennedyD , GilesJ. Role of Coenzyme Q(10) in chronic heart failure, angina, and hypertension. Pharmacotherapy21(7), 797–806 (2001).
  • Littarru G , TianoL. Bioenergetic and antioxidant properties of Coenzyme Q10: recent developments. Mol. Biotechnol.37(1), 31–37 (2007).
  • Garrido-Maraver J , CorderoMD , Oropesa-ÁvilaMet al. Coenzyme Q10 therapy. Mol. Syndromol.5(3-4), 187–197 (2014).
  • Fetoni AR , TroianiD , EramoSL , RolesiR , PaludettiTroiani G. Efficacy of different routes of administration for Coenzyme Q10 formulation in noise-induced hearing loss: systemic versus transtympanic modality. Acta Otolaryngol.132(4), 391–399 (2012).
  • Greenberg S , FrishmanW. Coenzyme-Q10 – a new drug for cardiovascular-disease. J. Clin. Pharmacol.30(7), 596–608 (1990).
  • Gupta S , KesarlaR , OmriA. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm.2013 (2013).
  • Gomez-Orellana I . Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv.2(3), 419–433 (2005).
  • Tziona P , Theodosis-NobelosP , RekkaEA. Medicinal Chemistry approaches of controlling gastrointestinal side effects of non-steroidal anti-inflammatory drugs. endogenous protective mechanisms and drug design. Med. Chem.13(5), 408–420 (2017).
  • Moitessier N , PottelJ , TherrienEet al. Medicinal chemistry projects requiring imaginative structure-based drug design methods. Acc. Chem. Res.49(9), 1646–1657 (2016).
  • Sunoqrot S , HamedR , Abdel-HalimH , TarawnehO. Synergistic interplay of medicinal chemistry and formulation strategies in nanotechnology – from drug discovery to nanocarrier design and development. Curr. Top Med. Chem.17(13), 1451–1468 (2017).
  • Yan B . Impacts of nanotechnology on medicinal chemistry and drug discovery. Curr. Med. Chem.18(14), 2044 (2011).
  • Field LD , NagOK , SangtaniA , BurnsKE , DelehantyJB. The role of nanoparticles in the improvement of systemic anticancer drug delivery. Ther. Deliv.9(7), 527–545 (2018).
  • Bertoni S , DolciLS , AlbertiniB , PasseriniN. Spray congealing: a versatile technology for advanced drug-delivery systems. Ther. Deliv.9(11), 833–845 (2018).
  • Mooranian A , NegruljR , Al-SalamiH. Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of β-cells. Ther. Deliv.7(3), 171–178 (2016).
  • Tønnesen HH , KarlsenJ. Alginate in drug delivery systems. Drug Dev. Ind. Pharm.28(6), 621–630 (2002).
  • Pavlović N , Goločorbin-KonS , ĐanićMet al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Fronti. Pharmacol.9, 1283–1283 (2018).
  • Orive G , MariaHernández R , RodríGuezGascón Aet al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol.22(2), 87–92 (2004).
  • Bocanegra R , LuisSampedro J , Gañán-CalvoA , MarquezM. Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. J. Microencapsul.22(7), 745–759 (2005).
  • Hajifathaliha F , MahboubiA , NematollahiL , MohitE , BolourchianN. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J. Pharm. Sci.15(1), 95–103 (2020).
  • Esser-Kahn AP , SottosNR , WhiteSR , MooreJS. Programmable microcapsules from self-immolative polymers. J. Am. Chem. Soc.132(30), 10266–10268 (2010).
  • Mooranian A , NegruljR , TakechiR , JamiesonE , MorahanG , Al-SalamiH. New biotechnological microencapsulating methodology utilizing individualized gradient-screened jet laminar flow techniques for pancreatic beta-cell delivery: bile acids support cell energy-generating mechanisms. Mol. Pharm.14(8), 2711–2718 (2017).
  • Mooranian A , NegruljR , TakechiR , JamiesonE , MorahanG , Al-SalamiH. Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic beta cells. Ther. Deliv.8(10), 833–842 (2017).
  • Armin Mooranian RN , Al-SalamiH. Viability and topographical analysis of microencapsulated β-cells exposed to a biotransformed tertiary bile acid: an ex vivo study. Int. J. Nano Biomater. (2016) ( In Press).
  • Mooranian A , NegruljR , JamiesonE , MorahanG , Al-SalamiH. Biological assessments of encapsulated pancreatic β-cells: their potential transplantation in diabetes. Cell. Mol. Bioeng.9(4), 530–537 (2016).
  • Szekalska M , PuciłowskaA , SzymańskaE , CiosekP , WinnickaK. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int.J. Polym. Sci.2016(2016), 1–17 (2016).
  • Mooranian A , NegruljR , Al-SalamiH. The influence of stabilized deconjugated ursodeoxycholic acid on polymer-hydrogel system of transplantable NIT-1 cells. J. Am. Assoc. Pharm. Sci.33(5), 1182–1190 (2016).
  • Jyothi NVN , PrasannaPM , SakarkarSN , PrabhaKS , RamaiahPS , SrawanGY. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul.27, 187–197 (2010).
  • Wagle SR , KovacevicB , WalkerDet al. Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies. Expert Opin. Drug Deliv. doi:10.1080/17425247.2020.1789587 (2020).
  • Angelina Angelova Borislav A . Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen. Res.12(6), 886–889 (2017).
  • Zerkoune L , LesieurS , PutauxJ-Let al. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substancesElectronic supplementary information (ESI) available: physico-chemical characteristics (Table S1), the chemical structure of Oil red O (OR) (Figure S1) and additional results from quasi-elastic light scattering, POM, UV-Visible spectroscopy and optical density measurements (Figure S2-S11). 12(36), 7539–7755 (2016).
  • Guerzoni LPB , GuerzoniLPB , NicolasV , NicolasV , AngelovaA , AngelovaA. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res.34(2), 492–505 (2017).
  • Mooranian A , NegruljR , Al-SalamiH. The effects of ionic gelation- vibrational jet flow technique in fabrication of microcapsules incorporating β-cell: applications in diabetes. Curr. Diabetes Rev.13(1), 91–96 (2017).
  • Mooranian A , NegruljR , Al-SalamiH. Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of beta-cells. Ther. Deliv.7(3), 171–178 (2016).
  • Loh Q , WongY , ChoongC. Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties. Colloid Polym. Sci.290, 619–629 (2012).
  • Mørch YA , DonatiI , StrandBL , Skjåk-BraekG. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules7(5), 1471–1480 (2006).
  • Thu B , BruheimP , EspevikT , SmidsrødO , Soon-ShiongP , Skjåk-BrækG. Alginate polycation microcapsules: I. Interaction between alginate and polycation. Biomaterials17(10), 1031–1040 (1996).
  • Negrulj R , MooranianA , Al-SalamiH. Potentials and Limitations of Bile acids in Type 2 diabetes mellitus: applications of microencapsulation as a novel oral delivery system. J. Endocrinol. Diab. Mellitus1(2), 49–59 (2013).
  • Mooranian A , NegruljR , Chen-TanNet al. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study. Drug Des. Devel. Ther.8, 1003–1012 (2014).
  • Mooranian A , NegruljR , MathavanSet al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J. Pharm. Innovation9(2), 150–157 (2014).
  • Mooranian A , NegruljR , MathavanSet al. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharm. Dev. Technol.20(6), 702–709 (2015).
  • Negrulj R , MooranianA , Chen-TanNet al. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artif Cells Nanomed. Biotechnol.44(5), 1290–1297 (2016).
  • Mamo JCL , LamV , Al-SalamiHet al. Sodium alginate capsulation increased brain delivery of probucol and suppressed neuroinflammation and neurodegeneration. Ther. Deliv.9(10), 703–709 (2018).
  • Mooranian A , NegruljR , Chen-TanNet al. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol. Drug Design. Dev. Ther.8, 1221–1230 (2014).
  • Strand BL , RyanTL , In'tVeld Pet al. Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant.10(3), 263–275 (2001).
  • Lim F , SunAM. Microencapsulated islets as bioartificial endocrine pancreas. Science210(4472), 908–910 (1980).
  • Mooranian A , ZamaniN , TakechiRet al. Modulatory nano/micro effects of diabetes development on pharmacology of primary and secondary bile acids concentrations. Curr. Diab. Rev. doi:10.2174/1389450121666200204115121 (2020).
  • Mooranian A , ZamaniN , MikovMet al. A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharm. J.28(2), 165–171 (2020).
  • Mooranian A , TackechiR , JamiesonE , MorahanG , Al-SalamiH. Innovative microcapsules for pancreatic beta-cells harvested from mature double-transgenic mice: cell imaging, viability, induced glucose-stimulated insulin measurements and proinflammatory cytokines analysis. Pharm. Res.34(6), 1217–1223 (2017).
  • Takka S , AcarturkF. Calcium alginate microparticles for oral administration: I: effect of sodium alginate type on drug release and drug entrapment efficiency. J. Microencapsul.16(3), 275–290 (1999).
  • Al-Zoubi NM , AlkhatibHS , ObeidatWM. Evaluation of hydrophilic matrix tablets based on Carbopol((R)) 971P and low-viscosity sodium alginate for pH-independent controlled drug release. Drug Dev. Ind. Pharm.37(7), 798–808 (2011).
  • Mooranian ANR , MikovM , Golocorbin-KonS , ArfusoF , Al-SalamiH. Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study. J. Microencapsul. (2015) ( In Press).
  • Nurunnabi M , KhatunZ , RevuriVet al. Design and strategies for bile acid mediated therapy and imaging. RSC Adv.6(78), 73986–74002 (2016).
  • Molinaro A , WahlströmA , MarschallH-U. Role of bile acids in metabolic control. Trends Endocrinol. Metab.29(1), 31–41 (2018).
  • Subuddhi U , MishraAK. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf. B Biointerfaces57(1), 102–107 (2007).
  • Roda A , MinutelloA , AngellottiMA , FiniA. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J. Lipid Res.31(8), 1433 (1990).
  • Darkoh C , LichtenbergerLM , AjamiN , DialEJ , JiangZ-D , DupontHL. Bile acids improve the antimicrobial effect of rifaximin. Antimicrob. Agents Chemother.54(9), 3618–3624 (2010).
  • Zhou Y , MaxwellKN , SezginEet al. Bile acids modulate signaling by functional perturbation of plasma membrane domains. J. Biol. Chem.288(50), 35660–35670 (2013).
  • Woodhams L , Al-SalamiH. The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus. Ther. Deliv.8(6), 401–409 (2017).
  • Mooranian A , ZamaniN , MikovMet al. Stability and biological testing of taurine-conjugated bile acid antioxidant microcapsules for diabetes treatment. Ther. Deliv.10(2), 99–106 (2019).
  • Mooranian A , RajWagle S , KovacevicBet al. Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci. Rep.10(1), 106–115 (2020).
  • Mihalj MP , KsenijaNK. Influence of bile acids on the adsorption of lidocaine and verapamil in an in vitro experiment. J. Serb. Chem. Soc.75(4), 433–440 (2010).
  • Zhang Z , LiH , XuG , YaoP. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv.25(1), 1224–1233 (2018).
  • Mooranian A , NegruljR , ArfusoF , Al-SalamiH. Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic β-cell line. Artif. Cells Nanomed. Biotechnol.44(7), 1642–1653 (2016).
  • Ridlon JM , HarrisSC , BhowmikS , KangD-J , HylemonPB. Consequences of bile salt biotransformations by intestinal bacteria. Gut. Microbes7(1), 22–39 (2016).
  • Samstein RM , PericaK , BalderramaF , LookM , FahmyTM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials29(6), 703–708 (2008).
  • Lalic-Popovic M , VasovicV , MilijasevicB , Golocorbin-KonS , Al-SalamiH , MikovM. Deoxycholic acid as a modifier of the permeation of gliclazide through the blood brain barrier of a rat. J. Diabetes Res.2013, 598603 (2013).
  • Mooranian A , NegruljR , Chen-TanN , WattsG , ArfusoF , Al-SalamiH. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer. Drug Des. Dev. Ther.8, 1673–1683 (2014).
  • Sreekanth V , MedatwalN , KumarSet al. Tethering of chemotherapeutic drug/imaging agent to bile acid-phospholipid increases the efficacy and bioavailability with reduced hepatotoxicity. Bioconjug. Chem.28(12), 2942–2953 (2017).
  • Patil S , PatilS , GawaliS , ShendeS , JadhavS , BasuS. Novel self-assembled lithocholic acid nanoparticles for drug delivery in cancer. RSC Adv.3(43), 19760–19764 (2013).
  • Wagle SR , WalkerD , KovacevicBet al. Micro-Nano formulation of bile-gut delivery: rheological, stability and cell survival, basal and maximum respiration studies. Sci. Rep.10(1), 7715 (2020).
  • Crumling MA , KingK , DuncanR. Cyclodextrins and iatrogenic hearing loss: new drugs with significant risk. Front. Cell. Neurosci.11, 335 (2017).
  • Loftsson T , DuchêneD. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm.329(1-2), 1–11 (2007).
  • Douroumis D , FahrA. Drug delivery strategies for poorly water-soluble drugs/edited by Dennis Douroumis and Alfred Fahr. Chichester, West Sussex: Wiley, Chichester, West Sussex1, 67–72 (2013).
  • Brewster ME , LoftssonT. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev.59(7), 645–666 (2007).
  • Kurkov SV , LoftssonT. Cyclodextrins. Int. J. Pharm.453(1), 167–180 (2013).
  • Szejtli J . The metabolism, toxicity and biological effects of cyclodextrins. In: Cyclodextrains and Their Industry Use. ( Ed.). Editions de Sante, Paris, France, 173–210 (1987).
  • Arima H , MotoyamaK , HigashiT. Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther. Deliv.8(4), 215–232 (2017).
  • Peng L , LiuS , FengA , YuanJ. Polymeric nanocarriers based on cyclodextrins for drug delivery: host-guest interaction as stimuli responsive linker. Mol. Pharmaceutics14(8), 2475–2486 (2017).
  • Thakur SS , SollowayJ , StikkelmanA , SeyfoddinA , RupenthalID. Phase transition of a microemulsion upon addition of cyclodextrin – applications in drug delivery. Pharm. Dev. Technol.23(2), 167–175 (2017).
  • Bellringer ME , SmithTG , ReadR , GopinathC , OlivierP. β-Cyclodextrin: 52-Week toxicity studies in the rat and dog. Food Chem. Toxicol.33(5), 367–376 (1995).
  • García-Segovia P , Barreto-PalaciosV , BretónJ , Martínez-MonzóJ. Microencapsulation of essential oils using β-cyclodextrin: applications in gastronomy. J. Culinary Sci. Technol.9(3), 150–157 (2011).
  • Ahmad M , AshrafB , GaniA , GaniA. Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol.109, 435–442 (2018).
  • Yallapu MM , JaggiM , ChauhanSC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces79(1), 113–125 (2010).
  • Zaghloul AA , GurleyB , KhanM , BhagavanH , ChopraR , ReddyI. Bioavailability assessment of oral Coenzyme Q10 formulations in dogs. Drug Dev. Ind. Pharm.28(10), 1195–1200 (2002).
  • Wahlqvist ML , WattanapenpaiboonN , SavigeGS , KannarD. Bioavailability of two different formulations of Coenzyme Q10 in healthy subjects. Asia Pac. J. Clin. Nutr.7(1), 37–40 (1998).
  • Basak S , MondalS , DeySet al. Fabrication of β-cyclodextrin-mediated single bimolecular inclusion complex: characterization, molecular docking, in-vitro release and bioavailability studies for gefitinib and simvastatin conjugate. J. Pharm. Pharmacol.69(10), 1304–1317 (2017).
  • Sakchareonkeat P , HuangT-C , SuwannapornP , HsuanChiang Y , LiangHsu J , HanHong Y. Encapsulation efficiency of Coenzyme Q10-liposomes in alginate. Nutr. Food Sci.43(2), 150–160 (2013).
  • Takahashi H , BungoY , MikuniKet al. Improved thermal property and absorption of Coenzyme Q10 in humans using cyclodextrin. J. Appl. Glycosci.57(3), 193–197 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.