97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustained-release Hydrogels of Ivermectin As Alternative Systems to Improve the Treatment of Cutaneous Leishmaniasis

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 779-790 | Received 28 Jul 2020, Accepted 05 Nov 2020, Published online: 17 Nov 2020

References

  • Molyneux DH , HotezPJ , FenwickA. “Rapid-impact interventions”: how a policy of integrated control for Africa's neglected tropical diseases could benefit the poor. PLoS Med.2(11), e336 (2005).
  • David CV , CraftN. Cutaneous and mucocutaneous leishmaniasis. Dermatol. Ther.22(6), 491–502 (2009).
  • Chappuis F , SundarS , HailuAet al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 5(11), 873–882 (2007).
  • Andrade-Neto VV , Cunha-JuniorEF , DosSantos Faioes Vet al. Leishmaniasis treatment: update of possibilities for drug repurposing. Front. Biosci. (Landmark Ed.)23, 967–996 (2018).
  • Khan Sharun T , AneeshaV , DhamaK , PawdeAM , PalA. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Vet. World12(8), 1204 (2019).
  • Crump A . Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations. J. Antibiot.70(5), 495–505 (2017).
  • Kadir M , AswadH , Al-SamaraiA , Al-MulaG. Comparison between the efficacy of ivermectin and other drugs in treatment of cutaneous leishmaniasis. Iraqi J. Vet. Sci.23(Suppl 2), 175–180 (2009).
  • Rasheid KA , MorsyTA. Efficacy of ivermectin on the infectivity of Leishmania major promastigotes. J. Egypt. Soc. Parasitol.28(1), 207–212 (1998).
  • Schaller M , GonserL , BelgeKet al. Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea. J. Eur. Acad. Dermatol.31(11), 1907–1911 (2017).
  • Ventre E , RozièresA , LeniefVet al. Topical ivermectin improves allergic skin inflammation. Allergy72, 1212–1221 (2017).
  • Peppas NA , BuresP , LeobandungW , IchikawaH. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm.50(1), 27–46 (2000).
  • Gupta B , AgarwalR , AlamMS. Textile-based smart wound dressings. Indian J. Fibre Text.35, 174–187 (2010).
  • Caló E , KhutoryanskiyVV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym.65, 252–267 (2015).
  • Jones V , GreyJE , HardingKG. Wound dressings. BMJ332(7544), 777–780 (2006).
  • Thomas S . Wounds and wound healing. In: Wound management and dressings.Pharmaceutical Press, London, UK, 1–14 (1990).
  • Vowden K , VowdenP. Wound dressings: principles and practice. Surg. Technol. Int.32(9), 462–467 (2014).
  • Boateng J , CatanzanoO. Advanced therapeutic dressings for effective wound healing – a review. J. Pharm. Sci.104(11), 3653–3680 (2015).
  • Ruel-Gariépy E , LerouxJC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur. J. Pharm. Biopharm.58(2), 409–426 (2004).
  • Lai PL , HongDW , KuKL , LaiZT , ChuIM. Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery. Nanomedicine10(3), 553–560 (2014).
  • Li Z , GuanJ. Thermosensitive hydrogels for drug delivery. Expert Opin. Drug Del.8(8), 991–1007 (2011).
  • Jeong B , KimSW , BaeYH. Thermosensitive sol-gel reversible hydrogels. Adv. Drug deliv. Rev.54(1), 37–51 (2002).
  • Gong C , QiT , WeiXet al. Thermosensitive polymeric hydrogels as drug delivery systems. Curr. Med. Chem.20(1), 79–94 (2013).
  • Liu C , GongC , PanYet al. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloids Surf. A Physicochem. Eng. Asp.302(1), 430–438 (2007).
  • Bermudez JM , GrauR. Thermosensitive poloxamer-based injectables as controlled drug release platforms for veterinary use: development and in-vitro evaluation. Int. Res. J. Pharm. Pharmacol.1(6), 109–118 (2011).
  • Fakhari A , CorcoranM , SchwarzA. Thermogelling properties of purified poloxamer 407. Heliyon3(8), e00390–e00390 (2017).
  • Edsman K , CarlforsJ , PeterssonR. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm.6(2), 105–112 (1998).
  • De Souza Ferreira SB , DaSilva JB , Borghi-PangoniFB , JunqueiraMV , BruschiML. Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications. J. Mech. Behav. Biomed.68, 265–275 (2017).
  • Jiang J , LiC , LombardiJet al. The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer49(16), 3561–3567 (2008).
  • Fernández-Colino A , BermudezJM , AriasFJ , QuinterosD , GonzoE. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. Mat. Sci. Eng. C Mater.61, 286–292 (2016).
  • Lo PKA , WilliamsJB. Solubilization of ivermectin in water. US Patent. 4, 389–397 (1983).
  • Fink DW . Ivermectin. In: Analytical Profiles of Drug Substances.FloreyK ( Ed.). Academic Press, Cambridge, MA USA, 155–184 (1988).
  • Erős I , CsókaI , CsányiE , Takács-WormsdorffT. Examination of drug release from hydrogels. Polym. Advan. Technol.14(11-12), 847–853 (2003).
  • Hütten M , DhanasinghA , HesslerRet al. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment. PLoS ONE9(8), e104564–e104564 (2014).
  • Nawaz S , KhanS , FarooqUet al. Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Des. Monomers. Polym.21(1), 18–32 (2018).
  • Romero AI , BermudezJM , VillegasM , DibAshur MF , ParentisML , GonzoEE. Modeling of progesterone release from poly(3-Hydroxybutyrate) (PHB) membranes. AAPS PharmSciTech17(4), 898–906 (2016).
  • Romero AI , VillegasM , CidAG , ParentisML , GonzoEE , BermúdezJM. Validation of kinetic modeling of progesterone release from polymeric membranes. Asian J. Pharm.13(1), 54–62 (2018).
  • Villegas M , CidAG , BrionesCAet al. Films based on the biopolymer poly(3-hydroxybutyrate) as platforms for the controlled release of dexamethasone. Saudi Pharm. J.27(5), 694–701 (2019).
  • Simonazzi A , CidA , ParedesAet al. Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther. Deliv.9, 623–638 (2018).
  • Simonazzi A , DaviesC , CidAG , GonzoE , ParadaL , BermúdezJM. Preparation and characterization of poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J. Pharm. Sci.107(11), 2829–2836 (2018).
  • Cid AG , RigoMVR , PalenaMC , GonzoEE , Jimenez-KairuzAF , BermúdezJM. Dual release model to evaluate dissolution profiles from swellable drug polyelectrolyte matrices. Curr. Drug Deliv. doi:10.2174/1567201817666200512093115 (2020) ( Epub ahead of print).
  • Cid AG , SonvicoF , BettiniRet al. Evaluation of the drug release kinetics in assembled modular systems based on the Dome Matrix technology. J. Pharm. Sci.doi:https://doi.org/10.1016/j.xphs.2020.06.006 (2020) ( Epub ahead of print).
  • Lenaerts V , TriqueneauxC , QuarternM , Rieg-FalsonF , CouvreurP. Temperature-dependent rheological behavior of Pluronic F-127 aqueous solutions. Int. J. Pharm.39(1), 121–127 (1987).
  • Alexandridis P , AlanHatton T. Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp.96(1), 1–46 (1995).
  • Baloglu E , KaravanaSY , SenyigitZA , GuneriT. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm. Dev. Technol.16(6), 627–636 (2011).
  • Miller SC , DrabikBR. Rheological properties of poloxamer vehicles. Int. J. Pharm.18(3), 269–276 (1984).
  • Narasimhan B . Mathematical models describing polymer dissolution: consequences for drug delivery. Adv. Drug Deliv. Rev.48(2-3), 195–210 (2001).
  • Frenning G , StrømmeM. Drug release modeled by dissolution, diffusion, and immobilization. Int. J. Pharm.250(1), 137–145 (2003).
  • Zhou Y , WuXY. Modeling and analysis of dispersed-drug release into a finite medium from sphere ensembles with a boundary layer. J. Control. Rel.90(1), 23–36 (2003).
  • Singhvi G , SinghM. In-vitro drug release characterization models. Int. J. Pharm. Stud. Res.2(1), 77–84 (2011).
  • Siepmann J , SiepmannF. Mathematical modeling of drug delivery. Int. J. Pharm.364(2), 328–343 (2008).
  • Pai-Chie C-C , FrankSG. In vitro release of lidocaine from pluronic F-127 gels. Int. J. Pharm.8(2), 89–99 (1981).
  • Rassing J , AttwoodD. Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer Pluronic F127 in aqueous solution. Int. J. Pharm.13(1), 47–55 (1982).
  • Costa P , LoboJMS. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci.13(2), 123–133 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.