299
Views
1
CrossRef citations to date
0
Altmetric
Review

Formulation and Clinical Perspectives of Inhalation-Based Nanocarrier Delivery: A New Archetype in Lung Cancer Treatment

, , , ORCID Icon &
Pages 397-418 | Received 15 Aug 2020, Accepted 19 Mar 2021, Published online: 27 Apr 2021

Reference

  • Toumazis I , BastaniM , HanSS , PlevritisSK. Risk-based lung cancer screening: a systematic review. Lung Cancer147, 154–186 (2020).
  • Ferrer L , LevraMG , BrevetMet al. A brief report of transformation from NSCLC to SCLC: molecular and therapeutic characteristics. J. Thorac. Oncol.14(1), 130–134 (2019).
  • Varlotto J , VolandR , DecampMet al. The rates of second lung cancers and the survival of surgically-resected second primary lung cancers in patients undergoing resection of an initial primary lung cancer. Lung Cancer147, 115–122 (2020).
  • Amreddy N , BabuA , MuralidharanRet al. Recent advances in nanoparticle-based cancer drug and gene delivery. In: Advances in Cancer Research( Eds). Elsevier, 115–170 (2018).
  • Wang J , LiZ , WangZet al. Nanomaterials for combinational radio–immuno oncotherapy. Adv. Funct. Mater.1910676 (2020).
  • Bardoliwala D , PatelV , JaviaA , GhoshS , PatelA , MisraA. Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Ther. Deliv.10(5), 311–332 (2019).
  • Yuan M , HuangL-L , ChenJ-H , WuJ , XuQ. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct. Target Ther.4(1), 1–14 (2019).
  • Ghosh S , LalaniR , PatelV , BhowmickS , MisraA. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin. Drug Deliv.16(12), 1287–1311 (2019).
  • Chan BA , HughesBG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res.4(1), 36 (2015).
  • Ahmad J , AkhterS , RizwanullahMet al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotech. Sci. Appl.8, 55 (2015).
  • Rudokas M , NajlahM , AlhnanMA , ElhissiA. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med. Princ. Pract.25(Suppl. 2), 60–72 (2016).
  • Zaru M , MourtasS , KlepetsanisP , FaddaAM , AntimisiarisSG. Liposomes for drug delivery to the lungs by nebulization. Eur. J. Pharm. Biopharm.67(3), 655–666 (2007).
  • Dabbagh A , AbuKasim NH , YeongCH , WongTW , AbdulRahman N. Critical parameters for particle-based pulmonary delivery of chemotherapeutics. J. Aerosol Med. Pulm. Drug Deliv.31(3), 139–154 (2018).
  • Hu J , ZhangR , BengH , DengL , KeQ , TanW. Effects of flow pattern, device and formulation on particle size distribution of nebulized aerosol. Int. J. Pharm.560, 35–46 (2019).
  • Beltrán-Gracia E , López-CamachoA , Higuera-CiaparaI , Velázquez-FernándezJB , Vallejo-CardonaAA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol.10(1), 11 (2019).
  • Javadzadeh Y , YaqoubiS. Therapeutic nanostructures for pulmonary drug delivery. In: Nanostructures for Drug Delivery ( Eds). Elsevier, 619–638 (2017).
  • Carvalho TC , PetersJI , WilliamsIii RO. Influence of particle size on regional lung deposition – what evidence is there?Int. J. Pharm.406(1–2), 1–10 (2011).
  • Schuster BS , SukJS , WoodworthGF , HanesJ. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials34(13), 3439–3446 (2013).
  • Leal J , SmythHD , GhoshD. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm.532(1), 555–572 (2017).
  • Song W , WeiS , ZhouYet al. Inhibition of lung fluid clearance and epithelial Na+ channels by chlorine, hypochlorous acid, and chloramines. J. Biol. Chem.285(13), 9716–9728 (2010).
  • Anderson N , BorlakJ. Drug-induced phospholipidosis. FEBS Lett.580(23), 5533–5540 (2006).
  • Lombry C , EdwardsDA , PréatV , VanbeverR. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am. J. Physiol. Lung Cell Mol. Physiol.286(5), L1002–L1008 (2004).
  • Smaldone G , BerklandC , GondaI , MitchellJ , UsmaniO , ClarkA. Ask the experts: the benefits and challenges of pulmonary drug delivery. Ther. Deliv.4(8), 905–913 (2013).
  • Tangri P , KhuranaS. Approaches to pulmonary drug delivery systems. Int. J. Pharm. Sci. Res.2(7), 1616 (2011).
  • Budha N , FrymoyerA , SmelickGet al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin. Pharmacol. Ther. 92(2), 203–213 (2012).
  • Lipinski CA , LombardoF , DominyBW , FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.23(1–3), 3–25 (1997).
  • Patton JS , FishburnCS , WeersJG. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc.1(4), 338–344 (2004).
  • Taylor KM , MccallionON. Ultrasonic nebulisers for pulmonary drug delivery. Int. J. Pharm.153(1), 93–104 (1997).
  • Lowry R , WoodA , HigenbottamT. Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin. Sci.74(4), 373–376 (1988).
  • Vandevanter DR , MontgomeryAB. Pure biologically active colistin, its components and a colistin formulation for treatment of pulmonary infections. WO1998020836A2.1998).
  • Ruge CA , KirchJ , LehrC-M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers – therapeutic possibilities and technological challenges. Lancet Respir. Med.1(5), 402–413 (2013).
  • Patton JS , PlatzRM. (D) Routes of delivery: case studies: (2) pulmonary delivery of peptides and proteins for systemic action. Adv. Drug Deliv. Rev.8(2–3), 179–196 (1992).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41, 189–207 (2001).
  • Tang L , YangX , YinQet al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl Acad. Sci. U. S. A.111(43), 15344–15349 (2014).
  • Scheule RK , GeorgeJaS , BagleyRGet al. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum. Gene Ther.8(6), 689–707 (1997).
  • Faculdade de Ciências e Tecnologia, Universidade Nova deLisboa . SilvaMC. Development of multifunctional composite aerosols for lung cancer therapy. (2016).
  • Patil J , SarasijaS. Pulmonary drug delivery strategies: a concise, systematic review. Lung India29(1), 44 (2012).
  • Chow MY , KwokPC , YangR , ChanH-K. Predicting the composition and size distribution of dry particles for aerosols and sprays of suspension: a Monte Carlo approach. Int. J. Pharm.582, 119311 (2020).
  • Boekestein VJ , HickeyAJ , CrowderTM. Uniform and reproducible delivery of albuterol from a variety of lactose powder blends using the Oriel active dispersion platform. Drug Deliv.107–110 (2002).
  • Labiris N , DolovichM. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol.56(6), 588–599 (2003).
  • Ibrahim M , VermaR , Garcia-ContrerasL. Inhalation drug delivery devices: technology update. Med. Devices8, 131 (2015).
  • Walenga RL , LongestPW. Current inhalers deliver very small doses to the lower tracheobronchial airways: assessment of healthy and constricted lungs. J. Pharm. Sci105(1), 147–159 (2016).
  • Mehta P . Dry powder inhalers: a focus on advancements in novel drug delivery systems. J. Drug Deliv.2016, 8290963 (2016).
  • Amararathna M , GoralskiK , HoskinDW , RupasingheHV. Pulmonary nano-drug delivery systems for lung cancer: current knowledge and prospects. J. Lung. Health.3(2), 11–28 (2019).
  • Mangal S , GaoW , LiT , ZhouQT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharm. Sin.38(6), 782–797 (2017).
  • Amreddy N , BabuA , MuralidharanR , MunshiA , RameshR. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. In: Polymeric Gene Delivery Systems ( Eds). Springer, 233–255 (2017).
  • Zarogoulidis P , ChatzakiE , PorpodisKet al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int. J. Nanomed.7, 1551 (2012).
  • Lee W-H , LooC-Y , TrainiD , YoungPM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J. Pharm. Sci.10(6), 481–489 (2015).
  • Respaud R , VecellioL , DiotP , Heuzé-Vourc'hN. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin. Drug Deliv.12(6), 1027–1039 (2015).
  • Videira M , AlmeidaAJ , FabraÀ. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine8(7), 1208–1215 (2012).
  • Roa WH , AzarmiS , Al-HallakMK , FinlayWH , MaglioccoAM , LöbenbergR. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release150(1), 49–55 (2011).
  • Kim I , ByeonHJ , KimTHet al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer. Biomaterials33(22), 5574–5583 (2012).
  • Kim I , ByeonHJ , KimTHet al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials34(27), 6444–6453 (2013).
  • Choi SH , ByeonHJ , ChoiJSet al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release197, 199–207 (2015).
  • Tseng C-L , SuW-Y , YenK-C , YangK-C , LinF-H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials30(20), 3476–3485 (2009).
  • Rosiere R , Van WoenselM , GelbckeMet al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm.15(3), 899–910 (2018).
  • Ghosh S , LalaniR , PatelVet al. Combinatorial nanocarriers against drug resistance in hematological cancers: opportunities and emerging strategies. J. Control. Release296, 114–139 (2019).
  • Xu C , WangY , GuoZet al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J. Control. Release295, 153–163 (2019).
  • Verschraegen CF , GilbertBE , LoyerEet al. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20 (s)-camptothecin in patients with advanced pulmonary malignancies. Clin. Cancer Res.10(7), 2319–2326 (2004).
  • Rosière R , AmighiK , WauthozN. Nanomedicine-based inhalation treatments for lung cancer. In: Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer ( Eds). Elsevier, 249–268 (2019).
  • Narvekar M , XueHY , EohJY , WongHL. Nanocarrier for poorly water-soluble anticancer drugs – barriers of translation and solutions. AAPS PharmSciTech15(4), 822–833 (2014).
  • Parvathaneni V , KulkarniNS , ShuklaSKet al. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics12(3), 206 (2020).
  • Jinturkar KA , AnishC , KumarMK , BagchiT , PandaAK , MisraAR. Liposomal formulations of etoposide and docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials33(8), 2492–2507 (2012).
  • Wittgen B , KunstP , vander BKet al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res.13, 2414–2421 (2007).
  • Koshkina NV , WaldrepJC , RobertsLE , GolunskiE , MeltonS , KnightV. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin. Cancer Res.7(10), 3258–3262 (2001).
  • Knight V , KleinermanES , WaldrepJC , GiovanellaBC , GilbertBE , KoshkinaNV. 9-nitrocamptothecin liposome aerosol treatment of human cancer subcutaneous xenografts and pulmonary cancer metastases in mice. Ann. N. Y. Acad. Sci.922(1), 151–163 (2000).
  • Koshkina NV , KleinermanES , WaldrepCet al. 9-nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin. Cancer Res.6(7), 2876–2880 (2000).
  • Weber S , ZimmerA , PardeikeJ. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur. J. Pharm. Biopharm.86(1), 7–22 (2014).
  • Krymskaya VP . Therapeutic strategies for treatment of pulmonary lymphangioleiomyomatosis. Expert Opin. Orphan Drugs2(10), 1063–1074 (2014).
  • Landh E , MoirLM , DosReis LG , TrainiD , YoungPM , OngHX. Inhaled rapamycin solid lipid nano particles for the treatment of lymphangioleiomyomatosis. Eur. J. Pharm. Sci.142, 105098 (2020).
  • Naseri N , Zakeri-MilaniP , HamishehkarH , Pilehvar-SoltanahmadiY , ValizadehH. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method. Drug Res.67(06), 343–348 (2017).
  • Bayón-Cordero L , AlkortaI , AranaL. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials9(3), 474 (2019).
  • Kaur P , MishraV , ShunmugaperumalT , GoyalAK , GhoshG , RathG. Inhalable spray dried lipid nanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J. Drug Deliv. Sci. Technol.56, 101502 (2020).
  • Patil TS , DeshpandeAS. Nanostructured lipid carriers-based drug delivery for treating various lung diseases: a state-of-the-art review. Int. J. Pharm.547(1–2), 209–225 (2018).
  • Gaballu FA , Abbaspour-RavasjaniS , MansooriBet al. Comparative of in-vitro evaluation between erlotinib loaded nanostructured lipid carriers and liposomes against A549 lung cancer cell line. Iran. J. Pharm. Res.18(3), 1168 (2019).
  • Alexis F , PridgenE , MolnarLK , FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5(4), 505–515 (2008).
  • Soppimath KS , AminabhaviTM , KulkarniAR , RudzinskiWE. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release70(1–2), 1–20 (2001).
  • Elsabahy M , WooleyKL. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev.41(7), 2545–2561 (2012).
  • Elbatanony RS , ParvathaneniV , KulkarniNSet al. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC) – development and in-vitro efficacy. Drug Deliv. Transl. Res.1–17 (2020).
  • Tian J , MinY , RodgersZet al. Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomedicine13(3), 1301–1307 (2017).
  • Tian J , MinY , RodgersZet al. Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. J. Mater. Chem. B5(30), 6049–6057 (2017).
  • Madni A , BatoolA , NoreenSet al. Novel nanoparticulate systems for lung cancer therapy: an updated review. J. Drug. Target.25(6), 499–512 (2017).
  • Abdelaziz HM , GaberM , Abd-ElwakilMMet al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release269, 374–392 (2018).
  • Wang W , HaoY , LiuY , LiR , HuangDB , PanYY. Nanomedicine in lung cancer: current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.13(1), e1654 (2021).
  • Saravanakumar K , SathiyaseelanA , MariadossAVAet al. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr. Polym.245, 116407 (2020).
  • Zou Y , SunY , GuoBet al. α3β1 integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment. ACS Appl. Mater. Interfaces12(13), 14905–14913 (2020).
  • Parvathaneni V , KulkarniNS , ChauhanGet al. Development of pharmaceutically scalable inhaled anti-cancer nanotherapy – repurposing amodiaquine for non-small cell lung cancer (NSCLC). Mater. Sci. Eng. C Mater. Biol. Appl.115, 111139 (2020).
  • Cabral H , KataokaK. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release190, 465–476 (2014).
  • Kedar U , PhutaneP , ShidhayeS , KadamV. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine6(6), 714–729 (2010).
  • Cho H , LaiTC , TomodaK , KwonGS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech16(1), 10–20 (2015).
  • Wang X-S , ZhangL , LiXet al. Nanoformulated paclitaxel and AZD9291 synergistically eradicate non-small-cell lung cancers in vivo. Nanomedicine13(10), 1107–1120 (2018).
  • Wan X , MinY , BludauHet al. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano12(3), 2426–2439 (2018).
  • Magalhães M , VeigaF , FigueirasA , SantosAC. Micellar nanoparticles for lung cancer drug and gene delivery. Appl. Encap. Control. Release103 (2019).
  • Muddineti OS , ShahA , RompicharlaSVK , GhoshB , BiswasS. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int. J. Biol. Macromol.118, 857–863 (2018).
  • Liu J , HeJ , ZhangM , XuG , NiP. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J. Mater. Chem. B6(20), 3262–3273 (2018).
  • He L , XuJ , ChengXet al. Hybrid micelles based on Pt (IV) polymeric prodrug and TPGS for the enhanced cytotoxicity in drug-resistant lung cancer cells. Colloids Surf. B Biointerfaces195, 111256 (2020).
  • Feng Q , TongR. Anticancer nanoparticulate polymer-drug conjugate. Bioeng. Transl. Med.1(3), 277–296 (2016).
  • Vhora I , PatilS , BhattP , MisraA. Protein and peptide–drug conjugates: an emerging drug delivery technology. In: Advances in Protein Chemistry and Structural Biology ( Eds). Elsevier, 1–55 (2015).
  • Ekladious I , ColsonYL , GrinstaffMW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov.18(4), 273–294 (2019).
  • Larson N , GhandehariH. Polymeric conjugates for drug delivery. Chem. Mater.24(5), 840–853 (2012).
  • Marasini N , HaqueS , KaminskasLM. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr. Opin. Colloid Interface Sci.31, 18–29 (2017).
  • Dai L , WangL , DengLet al. Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci. Rep.4, 5871 (2014).
  • Ou Y , ChenK , CaiHet al. Enzyme/pH-sensitive polyHPMA–DOX conjugate as a biocompatible and efficient anticancer agent. Biomater. Sci.6(5), 1177–1188 (2018).
  • Zhou Q , ShaoS , WangJet al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol.14(8), 799–809 (2019).
  • Chang M , ZhangF , WeiTet al. Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J. Drug Target.24(6), 475–491 (2016).
  • Cohen JL , AlmutairiA , CohenJAet al. Enhanced cell penetration of acid-degradable particles functionalized with cell-penetrating peptides. Bioconjug. Chem.19(4), 876–881 (2008).
  • Rao KK , ZhongQ , BielskiER , DaRocha SR. Nanoparticles of pH-responsive, PEG–doxorubicin conjugates: interaction with an in vitro model of lung adenocarcinoma and their direct formulation in propellant-based portable inhalers. Mol. Pharm.14(11), 3866–3878 (2017).
  • Rades N , AchaziK , QiuMet al. Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. J. Control. Release300, 13–21 (2019).
  • Kamel NM , HelmyMW , AbdelfattahE-Zet al. Inhalable dual-targeted hybrid lipid nanocore–protein shell composites for combined delivery of genistein and all-trans retinoic acid to lung cancer cells. ACS Biomater. Sci. Eng.6(1), 71–87 (2019).
  • Fukushige K , TagamiT , NaitoMet al. Developing spray-freeze-dried particles containing a hyaluronic acid-coated liposome–protamine–DNA complex for pulmonary inhalation. Int. J. Pharm.119338 (2020).
  • Dormenval C , LokrasA , Cano-GarciaGet al. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. Pharm. Res.36(10), 142 (2019).
  • Vencken S , FogedC , RamseyJMet al. Nebulised lipid–polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res.5(2), 00161–02018 (2019).
  • Youngren-Ortiz SR , HillDB , HoffmannPRet al. Development of optimized, inhalable, gemcitabine-loaded gelatin nanocarriers for lung cancer. J. Aerosol Med. Pulm. Drug Deliv.30(5), 299–321 (2017).
  • Abdelrady H , HathoutRM , OsmanR , SaleemI , MortadaND. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur. J. Pharm. Sci.133, 115–126 (2019).
  • Menon JU , KuriakoseA , IyerRet al. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci. Rep.7(1), 1–13 (2017).
  • Nozohouri S , SalehiR , GhanbarzadehS , AdibkiaK , HamishehkarH. A multilayer hollow nanocarrier for pulmonary co-drug delivery of methotrexate and doxorubicin in the form of dry powder inhalation formulation. Mater. Sci. Eng. C Mater. Biol. Appl.99, 752–761 (2019).
  • Taratula O , GarbuzenkoOB , ChenAM , MinkoT. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug Target.19(10), 900–914 (2011).
  • Zhang Q , LiuQ , DuMet al. Cetuximab and doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J. Magn. Magn. Mater.481, 122–128 (2019).
  • Genta I , ChiesaE , ColzaniB , ModenaT , ContiB , DoratiR. GE11 peptide as an active targeting agent in antitumor therapy: a minireview. Pharmaceutics10(1), 2 (2018).
  • Zhu X , KongY , LiuQet al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther.55, 50–61 (2019).
  • Riaz MK , ZhangX , WongKHet al. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int. J. Nanomedicine14, 2879 (2019).
  • Gaspar MM , RadomskaA , GobboOL , BakowskyU , RadomskiMW , EhrhardtC. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J. Aerosol Med. Pulm. Drug. Deliv.25(6), 310–318 (2012).
  • Qin S-Y , ZhangA-Q , ChengS-X , RongL , ZhangX-Z. Drug self-delivery systems for cancer therapy. Biomaterials112, 234–247 (2017).
  • Taratula O , KuzmovA , ShahM , GarbuzenkoOB , MinkoT. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release171(3), 349–357 (2013).
  • Hanafi-Bojd MY , AnsariL , Malaekeh-NikoueiB. Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles. Ther. Deliv.7(9), 649–655 (2016).
  • Garbuzenko OB , KuzmovA , TaratulaO , PineSR , MinkoT. Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo-and gene therapy. Theranostics9(26), 8362 (2019).
  • Wittgen BP , KunstPW , VanDer Born Ket al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res.13(8), 2414–2421 (2007).
  • Skubitz KM , AndersonPM. Inhalational interleukin-2 liposomes for pulmonary metastases: a phase I clinical trial. Anticancer Drugs11(7), 555–563 (2000).
  • Yang W , PetersJI , WilliamsRO 3rd. Inhaled nanoparticles – a current review. Int. J. Pharm.356(1–2), 239–247 (2008).
  • Geiser M . Update on macrophage clearance of inhaled micro- and nanoparticles. J. Aerosol Med. Pulm. Drug Deliv.23(4), 207–217 (2010).
  • Vega-Villa KR , TakemotoJK , YáñezJA , RemsbergCM , ForrestML , DaviesNM. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev.60(8), 929–938 (2008).
  • Tsuda A , HenryFS , ButlerJP. Particle transport and deposition: basic physics of particle kinetics. Compr. Physiol.3(4), 1437–1471 (2011).
  • Holm BA , WangZ , EganEA , NotterRH. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr. Res.39(5), 805–811 (1996).
  • Bakand S , HayesA , DechsakulthornF. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol.24(2), 125–135 (2012).
  • Harush-Frenkel O , Bivas-BenitaM , NassarTet al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol. Appl. Pharmacol.246(1–2), 83–90 (2010).
  • Chandel A , GoyalAK , GhoshG , RathG. Recent advances in aerosolised drug delivery. Biomed. Pharmacother.112, 108601 (2019).
  • Kleinstreuer C , ZhangZ , DonohueJ. Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng.10, 195–220 (2008).
  • Pausley ME , SeeleckeS. Multifunctional SMA-based smart inhaler system for improved aerosol drug delivery: design and fabrication. Presented at: Active and Passive Smart Structures and Integrated Systems 2008. (2008).
  • Zarogoulidis P , GialeliC , KaramanosNK. Inhaled chemotherapy in lung cancer: safety concerns of nanocomplexes delivered. Ther. Deliv.3(9), 1021–1023 (2012).
  • Kumar A , DaileyLA , ForbesB. Lost in translation: what is stopping inhaled nanomedicines from realizing their potential?Ther. Deliv.5(7), 757–761 (2014).
  • Delvadia RR , LongestPW , ByronPR. In vitro tests for aerosol deposition. I: scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J. Aerosol Med. Pulm. Drug Deliv.25(1), 32–40 (2012).
  • Mukherjee B , MajiR , RoychowdhuryS , GhoshS. Toxicological concerns of engineered nanosize drug delivery systems. Am. J. Ther.23(1), e139–e150 (2016).
  • Zhu X , KongY , LiuQet al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther.55, 50–61 (2019).
  • Gandhi M , PandyaT , GandhiRet al. Inhalable liposomal dry powder of gemcitabine-HCl: formulation, in vitro characterization and in vivo studies. Int. J. Pharm.496(2), 886–895 (2015).
  • Zhang T , ChenY , GeY , HuY , LiM , JinY. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B8(3), 440–448 (2018).
  • Satari N , TaymouriS , VarshosazJ , RostamiM , MirianM. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev. Ind. Pharm.46(8), 1265–1277 (2020).
  • Pang J , XingH , SunY , FengS , WangS. Non-small cell lung cancer combination therapy: hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab. Biomed. Pharmacother.125, 109861 (2020).
  • Mandal B , MittalNK , BalabathulaP , ThomaLA , WoodGC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci.81, 162–171 (2016).
  • Shukla SK , KulkarniNS , FarralesPet al. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm. Res.37(3), 1–19 (2020).
  • Vaidya B , ParvathaneniV , KulkarniNSet al. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol.122, 338–347 (2019).
  • Patel J , AmrutiyaJ , BhattP , JaviaA , JainM , MisraA. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul.35(2), 204–217 (2018).
  • Rosière R , Van WoenselM , MathieuVet al. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int. J. Pharm.501(1–2), 148–159 (2016).
  • Luo T , Loira-PastorizaC , PatilHPet al. PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma. J. Control. Release239, 62–71 (2016).
  • Kaminskas LM , McleodVM , RyanGMet al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control. Release183, 18–26 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.