31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cubosomal nanoformulation increase in vitro dissolution and anticancer activity of Fisetin in A549 lung cancer cells

ORCID Icon, ORCID Icon & ORCID Icon
Pages 355-369 | Received 18 Dec 2023, Accepted 05 Mar 2024, Published online: 19 Apr 2024

References

  • Zhou C, Huang Y, Nie S et al. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur. J. Med. Res. 28(1), 297 (2023).
  • Kumar RM, Kumar H, Bhatt T et al. Fisetin in cancer: attributes, developmental aspects, and nanotherapeutics. Pharmaceuticals 16(2), 196 (2023).
  • Qaed E, Al-Hamyari B, Al-Maamari A et al. Fisetin's promising antitumor effects: uncovering mechanisms and targeting for future therapies. Glob Med. Genet. 10(3), 205–220 (2023).
  • Kashyap D, Garg VK, Tuli HS et al. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9(5), 174 (2019).
  • Afroze N, Pramodh S, Shafarin J et al. Fisetin deters cell proliferation, induces apoptosis, alleviates oxidative stress and inflammation in human cancer cells, HeLa. Int. J. Mol. Sci. 23(3), 1707 (2022).
  • Eguchi H, Kimura R, Matsunaga H et al. Increase in anticancer drug-induced toxicity by fisetin in lung adenocarcinoma A549 spheroid cells mediated by the reduction of claudin-2 expression. Int. J. Mol. Sci. 23(14), 7536 (2022).
  • Jeong HM, Kang HN, Lee YR et al. Improved low water solubility of fisetin by enzymatic encapsulation reaction using cycloamylose produced by cyclodextrin glucanotransferase. Process Biochem. 130, 138–146 (2023).
  • Wang Y, Wu X, Ren W et al. Protective effects of fisetin in an Aβ1-42-induced rat model of Alzheimer's disease. Folia Neuropathol. 61(1), 196–208 (2023).
  • Huard CA, Gao X, Dey Hazra ME et al. Effects of fisetin treatment on cellular senescence of various tissues and organs of old sheep. Antioxidants 12(8), 1646 (2023).
  • Mitra S, Ghosh N, Paul P et al. Orally administered fisetin reduces the symptoms of acute allergic asthma in a preclinical mouse model. Biomed. Res. Ther. 9(3), 4953–4970 (2022).
  • Talaat SM, Elnaggar YSR, Gowayed MA et al. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv. Transl. Res. 14(2), 433–454 (2023).
  • Awadeen RH, Boughdady MF, Zaghloul RA et al. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci. Rep. 13(1), 19110 (2023).
  • Szymczak J, Cielecka-Piontek J. Fisetin-in search of better bioavailability-from macro to nano modifications: a review. Int. J. Mol. Sci. 24(18), 14158 (2023).
  • Ragelle H, Heloise R, Crauste-Manciet S, Seuign J et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int. J. Pharm. 427(2), 452 (2012).
  • Aboushanab AR, El-Moslemany RM, El-Kamel AH et al. Targeted fisetin-encapsulated β-cyclodextrin nanosponges for breast cancer. Pharmaceutics 15(5), 1480 (2023).
  • Seguin J, Brullé L, Boyer R et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm. 444(1–2), 146–154 (2013).
  • Mignet N, Seguin J, Ramos Romano M et al. Development of a liposomal formulation of the natural flavonoid fisetin. Int. J. Pharm. 423(1), 69–76 (2012).
  • Ghosh P, Singha Roy A, Chaudhury S et al. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. Int. J. Biol. Macromol. 86, 408–417 (2016).
  • Moolakkadath T, Aqil M, Ahad A et al. Development of transethosomes formulation for dermal fisetin delivery: Box – Behnken design, optimization, in vitro skin penetration, vesicles – skin interaction and dermatokinetic studies. Artif. Cell Nanomed. Biotechnol. 46(Suppl. 2), 755–765 (2018).
  • Xiao X, Zou J, Fang Y et al. Fisetin and polymeric micelles encapsulating fisetin exhibit potent cytotoxic effects towards ovarian cancer cells. BMC Complement. Altern. Med. 18(1), 1–2 (2018).
  • Moolakkadath T, Aqil M, Ahad A et al. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm. 560, 78–91 (2019).
  • Moolakkadath T, Aqil M, Ahad A et al. Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design. Int. J. Pharm. 578, 119125 (2020).
  • Kumar R, Khursheed R, Kumar R et al. Self-nanoemulsifying drug delivery system of fisetin: formulation, optimization, characterization and cytotoxicity assessment. J. Drug Deliv. Sci. Technol. 54, 101252 (2019).
  • Kumar R, Khurana N, Sharma N et al. Formulation of liquisolid powder of Fisetin. Eur. J. Mol. Clin. Med. 7(7), 4391–4397 (2020).
  • Skiba M, Gasmi H, Milon N et al. Water solubility and dissolution enhancement of fisetin by spherical amorphous solid dispersion in polymer of cyclodextrin. J. Adv. Biotechnol. Bioeng 8, 1106 (2021).
  • Liu WY, Lin CC, Hsieh YS. Nanoformulation development to improve the biopharmaceutical properties of fisetin using design of experiment approach. Molecules 26(10), 3031 (2021).
  • Lorthongpanich N, Mahalapbutr P, Rungrotmongkol T et al. Fisetin glycosides synthesized by cyclodextrin glycosyltransferase from Paenibacillus sp. RB01: characterization, molecular docking, and antioxidant activity. PeerJ 10, e13467 (2022).
  • Lorenzo GD, Scafuri L, Costabile F et al. Fisetin as an adjuvant treatment in prostate cancer patients receiving androgen-deprivation therapy. Futur. Sci. OA 8(3), FSO784 (2022).
  • Cytryniak A, Nazaruk E, Bilewicz R et al. Lipidic cubic-phase nanoparticles (Cubosomes) loaded with doxorubicin and labeled with177 lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials 10(11), 2272 (2020).
  • Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic cubic-phase nanoparticles-cubosomes for efficient drug delivery to cancer cells. Chempluschem 82(4), 570–575 (2017).
  • Flak DK, Adamski V, Nowaczyk G et al. At101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomed. 15, 7415–7431 (2020).
  • Sivadasan D, Sultan MH, Alqahtani SS et al. Cubosomes in drug delivery-A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines 11(4), 1114 (2023).
  • Kedar T, Jalalpure S, Kurangi B et al. Development and validation of stability-indicating RP-HPLC method for the estimation of fisetin in novel cubosomal nanoformulation: application to the marketed formulation and selected plant extracts. Curr. Pharm. Anal. 18(10), 983–992 (2022).
  • Alshawwa SZ, El-Masry TA, Nasr M et al. Celecoxib-loaded cubosomal nanoparticles as a therapeutic approach for Staphylococcus aureusin vivo infection. Microorganisms 11(9), 2247 (2023).
  • Sultan AA, Nashar NF, Ashmawy SM et al. Cubosomes for enhancing intestinal absorption of fexofenadine hydrochloride: in situ and in vivo investigation. Int. J. Nanomedicine 17, 3543–3560 (2022).
  • Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today 21(5), 789–801 (2016).
  • Kurangi B, Jalalpure S, Jagwani S. Formulation and evaluation of resveratrol loaded cubosomal nanoformulation for topical delivery. Curr. Drug Deliv. 18(5), 607–619 (2021).
  • Shi X, Peng T, Huang Y et al. Comparative studies on glycerol monooleate- and phytantriol-based cubosomes containing oridonin in vitro and in vivo. Pharm. Dev. Technol. 22(3), 322–329 (2017).
  • Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes-part I: influence of formulation variables. AAPS PharmSciTech. 10, 1032–1039 (2009).
  • Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes-part II: influence of process parameters. AAPS PharmSciTech. 10, 1040–1047 (2009).
  • Bei D, Zhang T, Murowchick JB et al. Formulation of dacarbazine-loaded cubosomes. Part III. physicochemical characterization. AAPS PharmSciTech. 11, 1243–1249 (2010).
  • Chishti N, Jagwani S, Dhamecha D et al. Preparation, optimization, and in vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina 55(6), 294 (2019).
  • Ahirrao M, Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev. Ind. Pharm. 43(10), 1686–1693 (2017).
  • Chettupalli AK, Ananthula M, Amarachinta PR et al. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res. Appl. Chem. 11, 12037–12054 (2021).
  • Hakeem EA, El-Mahrouk GM, Abdelbary G et al. Freeze-dried clopidogrel loaded lyotropic liquid crystal: Box-Behnken optimization, in-vitro and in-vivo evaluation. Curr. Drug Deliv. 17(3), 207–217 (2020).
  • Kumar KN, Mallik S, Sarkar K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. J. Acoust Soc. Am. 142(6), 3670–3676 (2017).
  • Nasr M, Younes H, Abdel-Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res. 10, 1302–1313 (2020).
  • Hundekar YR, Saboji JK, Patil SM et al. Preparation and evaluation of Diclofenac sodium Cubosomes for percutaneous administration. World Journal of Pharmacy and Pharmaceut. Sci. 3(1), 523–539 (2014).
  • Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B. 5(1), 79–88 (2015).
  • Teba HE, Khalil IA, El Sorogy HM. Novel cubosome based system for ocular delivery of acetazolamide. Drug Deliv. 28(1), 2177–2186 (2021).
  • Ahmed LM, Hassanein KM, Mohamed FA et al. Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci. Rep. 13(1), 17941 (2023).
  • Zhang X, Xiao Y, Huang Z et al. Smart phase transformation system based on lyotropic liquid crystalline@hard capsules for sustained release of hydrophilic and hydrophobic drugs. Drug Deliv. 27(1), 449–459 (2020).
  • Khorsandi L, Mansouri E, Rashno M et al. Myricetin loaded solid lipid nanoparticles upregulate MLKL and RIPK3 in human lung adenocarcinoma. Int. J. Pept. Res. Ther. 26, 899–910 (2020).
  • Choi IS, Kim BS, Cho KS et al. Amiodarone induces apoptosis in L-132 human lung epithelial cell line. Toxicol. Lett. 132(1), 47–55 (2002).
  • Mehdi SH, Zafaryab M, Nafees S et al. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pacific J. Cancer Biol. 4(2), 27–33 (2019).
  • Ragini SP, White J, Kirby N et al. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J. Colloid Interf. Sci. 649, 966–976 (2023).
  • Jagwani S, Jalalpure S, Dhamecha D et al. Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma. ACS Biomater. Sci. Eng. 6(9), 4969–4984 (2020).
  • Franken NA, Rodermond HM, Stap J et al. Clonogenic assay of cells in vitro. Nat. Protoc. 1(5), 2315–2319 (2006).
  • Chen Y, Wu Q, Song L et al. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl. Mater Interf. 7(1), 534–542 (2015).
  • Pramanik A, Xu Z, Shamsuddin SH et al. Affimer tagged cubosomes: targeting of carcinoembryonic antigen expressing colorectal cancer cells using in vitro and in vivo models. ACS Appl. Mater Interf. 14(9), 11078–11091 (2022).
  • Heneczkowski M, Kopacz M, Nowak D et al. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. – Drug Res. 58(6), 415–420 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.