290
Views
0
CrossRef citations to date
0
Altmetric
Review

Formulation Strategies for Sustained Release of Proteins

&
Pages 457-479 | Published online: 15 Sep 2010

Bibliography

  • World Health Organisation. Adherence to Long-term Therapies – Evidence for Action. ISBN: 9241545992 (2003).
  • Folkman J , LongDM. The use of silicone rubber as a carrier for prolonged drug therapy. Surg. Res.4, 139–142 (1964).
  • Heller J . Patient-friendly bioerodible drug delivery systems. J. Control. Release133, 88–89 (2009).
  • Kosobucki BR , FreemanWR, ChengL. Photographic estimation of the duration of high dose intravitreal triamcinolone in the vitrectomised eye. Br. J. Ophthalmol.90, 705–708 (2006).
  • Govardhan C , KhalafN, JungCWet al. Novel long acting crystal formulation of human growth hormone. Pharm. Res. 22(9), 1461–1470 (2005).
  • Kim SJ , HahnSK, KimMJet al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J. Control. Release 104, 323–335 (2005).
  • Hahn SK , KimSJ, KimMJ, KimDH. Characterisation and in vivo study of sustained release formulation of human growth hormone using sodium hyaluronate. Pharm. Res.21(8), 1374–1381 (2004).
  • Bidlingmaier M , KimJ, SavoyCet al. Comparative pharmacokinetics and pharmacodynamics of a new sustained release growth hormone, LB03002, versus daily GH in adults with GH deficiency. J. Clin. Endo. Met. 91(8), 2926–2930 (2006).
  • Peter F , SavoyC, JiHJet al. Pharmacokinetic and pharmacodynamic profile of a new sustained release GH formulation, LB03002, in children with GH deficiency. Eur. J. Endo. 160, 349–355 (2009).
  • Chang TMS . Semipermeable microcapsules. Science146 (3643), 524–525 (1964).
  • Chang TMS , PoznanskyMJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalasaemic mice. Nature218, 243–245 (1968).
  • Folkman J , LangerR. Polymers for the sustained release of proteins and other macromolecules. Nature263, 797–800 (1976).
  • Anderson JM , ShiveMS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Delivery Rev.28, 5–24 (1997).
  • Blasi P , D‘SouzaSS, SelminF, DeLucaPP. Plasticizing effect of water on poly(lactide-co-glycolide). J. Control. Release108, 1–9 (2005).
  • Tracey MA , WardKL, FirouzabadianLet al. Factors affecting the degradation rate of PLGA microspheres in vivo and in vitro. Biomaterials 20, 1057–1062 (1999).
  • Passerini N , CraigDQM. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated DSC. J. Control. Release73, 111–115 (2001).
  • Wang J , WangBM, ShwendemanSP. Characterisation of the initial burst release of a model peptide from poly(d,l-lactide-co-glycolide) microspheres. J. Control. Release82, 289–307 (2002).
  • Fu K , PackDW, KlibanovAM, LangerR. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res.17(1), 100–106 (2000).
  • Ding AG , SchwendemanSP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm. Res.25(9), 2041–2052 (2008).
  • Li L , SchwendemanSP. Mapping microclimate pH in PLGA microspheres. J. Control. Release101, 163–173 (2005).
  • Ding AG , ShenderovaA, SchwendemanSP. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc.128, 5384–5390 (2006).
  • Klose D , SiepmannF, ElkharrazK, SiepmannJ. PLGA-based drug delivery systems – importance of the type of drug and device geometry. Int. J. Pharm.354(1–2), 95–103 (2008).
  • Miller RA , BradyJM, CutrightDE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mater. Res.11, 711–719 (1977).
  • Dunne M , CorriganOI, RamtoolaZ. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glucolide particles. Biomaterials21, 1659–1668 (2000).
  • Perez-Marrero R , TylerRC. A subcutaneous delivery system for the extended release of leuprolide acetate for the treatment of prostate cancer. Expert Opin. Pharmacother.5(2), 447–457 (2004).
  • Brodbeck KJ , PushpalaS, McHughAJ. Sustained release of human growth hormone from PLGA solution depots. Pharm. Res.16(12), 1825–1829 (1999).
  • Shah NH , RailkarAS, ChenFCet al. A biodegradable injectable implant for delivering micro and macromolecules using PLGA copolymers. J. Control. Release 27, 391–147 (1993).
  • Graham PD , BrodbeckKJ, McHughAJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J. Control. Release58, 233–245 (1999).
  • Brodbeck KJ , DesNoyerJR, McHughAJ. Phase inversion dynamics of PLGA solutions related to drug delivery – Part II the role f solution thermodynamics and batch-side mass transfer. J. Control. Release62, 333–344 (1999).
  • Dunn RL , TiptonAJ, MenardiEM. A biodegradable in-situ forming drug delivery system. Proc. Intern. Symp. Control. Release Bioact. Mater.18, 456–466 (1991).
  • Schoenhammer K , PetersenH, GuethleinF, GoepferichA. Injectable in situ forming depot systems: PEG-DAE as a novel solvent for improved PLGA storage stability. Int. J. Pharm.371, 33–39 (2009).
  • Schoenhammer K , PetersenH, GuethleinF, GoepferichA. Poly(ethylene glycol)500 dimethylether as a novel solvent for injectable in situ forming depots. Pharm. Res.26(12), 2568–2577 (2009).
  • Shively ML , CoontsBA, RennerWD, SouthardSL, BennettAT. Physicochemical characterisation of a polymeric injectable implant delivery system. J. Control. Release33, 237–243 (1995).
  • Astaneh R , ErfanM, MoghimiH, MobediH. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behaviour. J. Pharm. Sci.98(1), 135–145 (2009).
  • Astaneh R , Nafissi-VarchehN, ErfanM. Zinc–leuprolide complex: preparation, physicochemical characterisation and release behaviour from in situ forming implant. J. Peptide Sci.13, 649–654 (2007).
  • Ravivarapu HB , MoyerKL, DunnRL. Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int. J. Pharm.194, 181–191 (2000).
  • Jain RA , RhodesCT, RailkarAMet al. Controlled release of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system. Pharm. Sci. 1(Suppl. 1), S298 (1998).
  • Luan X , BodmeierR. Influence of the PLGA type on the leuprolide release from in situ forming microparticle systems. J. Control. Release110, 266–272 (2006).
  • Luan X , BodmeierR. In situ forming microparticle system for drug delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur. J. Pharm. Sci.27, 143–149 (2006).
  • Kranz H , BodmeierR. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int. J. Pharm.332, 107–114 (2007).
  • Okumu F , DaoLN, FielderPJet al. Sustained delivery of human growth hormone from a novel gel system: SABER™. Biomaterials 23, 4353–4358 (2002).
  • Pechenov S , ShenoyB, YangMX, BasuSK, MargolinAL. Injectable controlled release formulations incorporating protein crystals. J. Control. Release96, 149–158 (2004).
  • Tae G , KornfieldJA, HubbellJA. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Biomaterials26, 5259–5266 (2005).
  • Ruiz-Hornillos J , Henriquez-SantanaA, Moreno-FernandezAet al. Systemic allergic dermatitis caused by the solvent of Eligard. Contact Dermatitis 61(6), 355–356 (2009).
  • Jeong B , BaeYH, LeeDS, KimSW. Biodegradable block co-polymers as injectable drug delivery systems. Nature388, 860–862 (1997).
  • Zentner GM , RathiR, ShihCet al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release 72, 203–215 (2001).
  • Chen S , SinghJ. Controlled release of growth hormone from thermosensitive triblock copolymer systems: in vitro and in vivo evaluation. Int. J. Pharm.352, 58–65 (2008).
  • Katakam M , RavisWR, BangaAK. Controlled release of human growth hormone in rats following parenteral administration of poloxamers gels. J. Control. Release49, 21–26 (1997).
  • Katakam M , RavisWR, GoldenDL, BangaAK. Controlled release of human growth hormone following subcutaneous administration in dogs. Int. J. Pharm.152, 53–58 (1997).
  • Chen PC , ParkYJ, ChangLCet al. Injectable microparticle-gel system for prolonged and localised lidocaine release. I. In vitro characterization. J. Biomed. Mater. Res. 70(3), 412–419. (2004).
  • Chen PC , KohaneDS, ParkYJet al. Injectable microparticle-gel system for prolonged and localised lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. 70A, 459–466 (2004).
  • Ricci EJ , BentleyMVLB, FarahM, BretasRES, MarchettisJM. Rheological characterisation of poloxamers 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci.17, 161–167 (2002).
  • Ricci EJ , LunardiLO, NanclaresDMA, MarchettiJM. Sustained release of lidocaine from poloxamers gels. Int. J. Pharm.288, 235–244 (2005).
  • Zhang L , ParsonsDL, NavarreC, KompellaUB. Development and in vitro evaluation of sustained release poloxamers 407 gel formulations of ceftiofur. J. Control. Release85, 73–81 (2002).
  • Johnston TP , PunjabiMA, FroelichCJ. Sustained delivery of interleukin-2 from a poloxamers 407 gel matrix following intraperitoneal injection in mice. Pharm. Res.9(3), 425–434 (1992).
  • Katakam M , BangaAK. Use of poloxamers polymers to stabilise recombinant human growth hormone against various processing stresses. Pharm. Dev. Tech.2(2), 143–149 (1997).
  • Jiang Z , YouY, DengXM, HaoJY. Injectable hydrogels of poly(ε-caprolactone-co-glycolide)-co-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolide) triblock copolymer aqueous solutions. Polymer48, 4786–4792 (2007).
  • Van de Weert M , HenninkWE, JiskootW. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res.17(10), 1159–1167 (2000).
  • Jiang Z , HaoJ, YouY, QunG, CaoW, DengX. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer: degradation and drug release behaviour. J. Pharm. Sci.98(8) 2603–2610 (2009).
  • Jain RA . The manufacturing technologies of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials21, 2475–2490 (2000).
  • Freitas S , MerkleHP, GanderB. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release102, 313–332 (2005).
  • O‘Donnell PB , McGintyJW. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Delivery Rev.28, 25–42 (1997).
  • Sukumar M , StormsSM, De Felippis MR. Non-native intermediate conformational states of human growth hormone in the presence of organic solvents. Pharm. Res.22(5), 789–796 (2005).
  • Sah H . Protein behaviour at the water/methylene chloride interface. J Pharm. Sci., 88(12), 1320–1325 (1999).
  • Cleland JL , JonesAJS. Stable formulations of recombinant human growth hormone and interferon- γ for microencapsulation in biodegradable microspheres. Pharm. Res.13(10), 1464–1475 (1996).
  • Castellanos IJ , CruzG, CrespoR, GreibenowK. Encapsulation induced aggregation and loss in activity of γ-chymotrypsin and their prevention. J. Control. Release81, 307–319 (2002).
  • Kim HK , ParkTG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotech. Bioeng.65(6) 659–667 (1999).
  • Perez C , GriebenowK. Effects of salts on lysozyme stability at the water-oil interface and upon encapsulation in PLGA microspheres. Biotech. Bioeng.82(7) 825–832 (2003).
  • Perez C , GriebenowK. Improved activity and stability of lysozyme at the water/CH2Cl2 interface: enzyme unfolding and aggregation and its prevention by polyols. J. Pharm. Pharmacol.53, 1217–1226 (2001).
  • Van de Weert M , HoechstetterJ, HenninkWE, CrommelinDJA. The effect of a water/organic solvent interface on the structural stability of lysozyme. J. Control. Release68, 351–359 (2000).
  • Carrasquillo KG , CarroJCA, AlejandroA, ToroDD, GreibenowK. Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation. J. Pharm. Pharmacol.53, 115–120 (2001).
  • Pérez C , De Jesus P, Griebenow K. Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int. J. Pharm.248, 193–206 (2002).
  • Cleland JL , MacA, BoydBet al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) PLGA microspheres. Pharm. Res. 14(4) 420–425 (1997).
  • Cleland JL , DuenasE, DaughertyAet al. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J. Control. Release 49, 193–205 (1997).
  • Cleland JL , JohnsonO, PutneyS, JonesAJS. Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv. Drug Delivery Rev.28, 71–84 (1997).
  • Kwak HH , ShimWS, ChoiMKet al. Development of a sustained release recombinant human growth hormone formulation. J. Control. Release 137, 160–165 (2009).
  • Castellanos IJ , FloresG, GriebenowK. Effect of cyclodextrins on α-chymotrypsin stability and loading in PLGA microspheres upon s/o/w emulsion. J. Pharm. Sci.95(4) 849–858 (2006).
  • Quaglia F , De Rosa G, Granata E et al. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray drying. J. Control. Release86, 267–278 (2003).
  • De Rosa G , LarobinaD, La Rotonda MI et al. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin. J. Control. Release102, 71–83 (2005).
  • Bezemer JM , RadersmaR, GrijpmaDWet al. Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylenes terephthalate matrices. J. Control. Release 64, 179–192 (2000).
  • Bezemer JM , RadersmaR, GrijpmaDW, DijkstraPJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multibock copolymers 1 influence of preparation techniques on particle characteristics and protein delivery. J. Control. Release67, 233–248 (2000).
  • Van Dijkhuizen-Radersma R , NicolasHM, van de Weert M et al.Stability aspects of salmon calcitonin entrapped in poly(ether ester) sustained release systems, Int. J. Pharm.248, 229–237 (2002).
  • Griebenow K , KilbanovAM. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc.118(47), 11695–11700 (1996).
  • Carrasquillo KG , StableyAM, Aponte-CarroJCet al. Non-aqueous encapsulation of excipient-stabilised spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J. Control. Release 76, 199–208 (2001).
  • Petit DK , LawterJR, HuangWJet al.Characterisation of poly(glycolide-co-d,l-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res.14(10), 1422–1430 (1997).
  • Constantino HR , JohnsonOL, ZaleSE. Relationship between encapsulated drug particle size and initial release of recombinant human growth hormone from biodegradable microspheres. J. Pharm Sci.93(10), 2624–2634 (2004).
  • Takada S , YamagataY, MisakiM, TairaK, KurokawaT. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J. Control. Release88, 229–242 (2003).
  • Castellanos IJ , CarrasquilloKG, LopezJDJ, AlvarezM, GriebenowK. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol.53, 167–178 (2001).
  • Wang J , ChuaKM, WangCH. Stabilisation and encapsulation of human immunoglobulin G into biodegradable microspheres. J. Col. Inter. Sci.271, 92–101 (2004).
  • Kim TK , BurgessDJ. Pharmacokinetic characterisation of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J. Pharm. Pharmacol.54, 897–905 (2002).
  • Zhu G , MallerySR, SchwendemanSP. Stabilisation of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotech.18, 52–57 (2000).
  • Kang J , SchwendemanSP. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants. Biomaterials23, 239–245 (2002).
  • Castellanos IJ , CrespoR, GriebenowK. Poly(ethylene glycol) as stabiliser and emulsifying agent: a novel stabilisation approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Release88, 135–145 (2003).
  • Castellanos IJ , GriebenowK. Improved α-chymotrypsin stability upon encapsulation in PLGA microspheres by solvent replacement. Pharm. Res.20(11), 1873–1880 (2003).
  • Morita T , SakamuraY, HorikiriY, SuzukiT, YoshinoH. Protein encapsulation into biodegradable microspheres by a novel s/o/w emulsion method using poly(ethylene glycol) as a protein micronisation adjuvant. J. Control. Release69, 435–444 (2000).
  • Morita T , HorikiriY, SuzukiT, YoshinoH. Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres. Eu. J. Pharm. Biopharm.51, 45–53 (2001).
  • Takada S , YamagataY, MisakiM, TairaK, KurokawaT. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J. Control. Release88, 229–242 (2003).
  • Takada S , KurokawaT, MisakiM, TairaK, YamagataY. A new animal model for the evaluation of long-term growth rate over one month by rhGH/PLGA microcapsule formulations. J. Pharm. Pharmacol.55, 951–961 (2003).
  • Takenaga M , YamaguchiY, KitagawaA, OgawaY, MizushimaY, IgarashiR. A novel sustained release formulation of insulin with dramatic reduction in rapid release. J. Control. Release79, 81–91 (2002).
  • Yamaguchi Y , TakenagaM, KitagawaA, OgawaY, MizushimaY, IgarashiR. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J. Control. Release81, 235–249 (2002).
  • Takenaga M , YamaguchiY, KitagawaAet al. Optimum formulation for sustained release insulin. Int. J. Pharm. 271, 85–94 (2004).
  • Takenaga M , YamaguchiY, KitagawaA, OgawaY, MizushimaY, IgarashiR. A novel insulin formulation can keep providing steady levels of insulin for much longer periods in vivo. J. Pharm. Pharmacol.54, 1189–1194 (2002).
  • Tracy MA . Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog.14, 108–115 (1998).
  • Johnson OL , ClelandJL, LeeHJet al. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med. 2, 795–799 (1996).
  • Johnson OL , JaworowiczW, ClelandJLet al. The stabilisation and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14(6), 730–735 (1997).
  • Lee HJ , RileyG, JohnsonOet al. In vivo characterisation of sustained release formulations of human growth hormone. J. Pharmacol. Exp. Thera.281(3), 1431–1439 (1997).
  • Reiter EO , AttieKM, MoshangTet al. A multicenter study of the efficacy and safety of sustained release GH in the treatment of naive pediatric patients with GH deficiency. J. Clin. Endo. Met. 86(10), 4700–4706 (2001).
  • Kemp SF , FielderPJ, AttieKMet al. Pharmacokinetic and pharmacodynamic characteristics of a long acting growth hormone (GH) preparation (Nutropin® Depot) in GH-deficient children. J. Clin. Endo. Met. 89(7), 3234–3240 (2004).
  • Howdle SM , WatsonMS, WhitakerMJet al. Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chem. Commun. 2001, 109–110 (2001).
  • Watson MS , WhitakerMJ, HowdleSM, ShakesheffKM. Incorporation of proteins into polymer materials by a novel supercritical fluid processing method. Adv. Mater.14(24), 1802–1804 (2002).
  • Hao J , WhitakerMJ, WongB, SerhatkuluG, ShakesheffKM, HowdleSM. Plasticization and spraying of poly(D,L-lactic acid) using supercritical carbon dioxide: control of particle size. J. Pharm. Sci.93(4), 1083–1090 (2004).
  • Hao J , WhitakerMJ, WongB, SerhatkuluG, ShakesheffKM, HowdleSM. Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent-free route to microparticles. J. Mater. Chem.15, 1148–1153 (2005).
  • Whitaker MJ , HaoJ, DaviesORet al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J. Control. Release 101, 85–92 (2005).
  • Jordan F , NaylorA, KellyCA, HowdleSM, LewisA, IllumL. Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J. Control. Release141, 153–160 (2010).
  • Reslow M , JonssonM, LaaksoT. Sustained release of human growth hormone from PLG-coated starch microspheres. Drug Del. Sys. Sci.2, 103–109 (2002).
  • Jostel A , MukherjeeA, AlenfallJ, SmethurstL, ShaletAM. A new sustained release preparation of human growth hormone and its pharmacokinetic, pharmacodynamic and safety profile. Clin. Endo.62, 623–627 (2005).
  • Stenekes RJH , FranssenO, van Brommel EMG, Crommelin DJA, Hennink WE. The preparation of dextran microspheres in an all-aqueous system: effect of formulation parameters on particle characteristics. Pharm. Res.15(4), 557–561 (1998).
  • Franssen O , VandervennetL, RodersP, HenninkWE. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Control. Release60, 211–221 (1999).
  • Vlugt-Wensink KDF , MeijerYJ, van Steenbergen MJ et al.Effect of excipients on the encapsulation efficiency and release of human growth hormone from dextran microspheres. Eur. J. Pharm. Biopharm.67, 589–596 (2007).
  • Vlugt-Wensink KDF , de Vreuh R, Gresnigt MG et al. Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation. Pharm. Res.24(12), 2239–2248 (2007).
  • Moore WV , LeppertP. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endo. Met.51(4), 691–697 (1980).
  • Woo BH , JiangG, JoYW, DeLucaPP. Preparation and characterisation of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm. Res.18(11), 1600–1606 (2001).
  • Capan Y , JiangG, GiovagnoliS, NaKH, DeLucaPP. Preparation and characterisation of poly(D,L-lactide-co-glycolide) microspheres for controlled release of human growth hormone. AAPS PharmSciTech4(2) 1–10 (2003).
  • Jiang G , QiuW, DeLucaPP. Preparation and in vitro-in vivo evaluation of insulin loaded poly(acryloyl hydroxyethyl starch)-PLGA composite microspheres. Pharm. Res.20(3), 452–459 (2003).
  • Schoubben A , BlasiP, GiovagnoliS, PerioliL, RossiC, RicciM. Novel composite microparticles for protein stabilisation and delivery. Eur. J. Pharm. Sci.36, 226–234 (2009).
  • Johansen P , TamberH, MerkleP, GanderB. Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alhylated PLA/PLGAs. Eu. J. Pharm. Biopharm.47, 193–201 (1999).
  • Agrawal CM , AthanasiouKA. Technique to control pH in vicinity of biodegrading PLA-PLGA implants. J. Biomed. Mater. Res.38, 105–114 (1997).
  • Shao PG , BaileyLC. Stabilisation of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Dev. Technol.4, 633–642 (1999).
  • Kim HK , ParkTG. Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D,L-lactic-co-glycolic acid) microspheres: morphological effect on protein release. J. Control. Release98, 115–125 (2004).
  • Kim HK , ChungHJ, ParkTG. Biodegradable polymeric microspheres with open/closed pores for sustained release of human growth hormone. J. Control. Release112, 167–174 (2006).
  • Bae SE , SonJS, ParkK, HanDK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Control. Release133, 37–43 (2009).
  • Lucke A , KiermaierJ, GopferichA. Peptide acylation by poly(α-hydroxy esters). Pharm. Res.19(2), 175–181 (2002).
  • Murty SB , GoodmanJ, ThanooBC, DeLucaPP. Identification of chemically modified peptide from poly(lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech4(4), E50 (2003).
  • Murty SB , ThanooBC, WeiQ, DeLucaPP Impurity formation studies with peptide loaded polymeric microspheres Part I. In vivo evaluation. Int. J. Pharm.297, 50–61 (2005).
  • Murty SB , DongHN, ThanooBC, DeLucaPP. Impurity formation studies with peptide loaded polymeric microspheres Part II. In vitro evaluation. Int. J. Pharm.297, 62–72 (2005).
  • Ibrahim MA , IsmailA, FetouchMI, GopferichA. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres. J. Control. Release106, 241–252 (2005).
  • Lam XM , DuenasET, ClelandJL. Encapsulation and stabilisation of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J. Pharm. Sci.90(9), 1356–1365 (2001).
  • Tsai T , MehtaRC, DeLucaPP. Adsorption of peptides to poly(D,L-lactide-co-glycolide):1 effect of physical factors. Int. J. Pharm.127, 31–42 (1996).
  • Tsai T , MehtaRC, DeLucaPP. Adsorption of peptides to poly(D,L-lactide-co-glycolide):2 effect of solution properties on the adsorption. Int. J. Pharm.127, 43–52 (1996).
  • Calis S , JeyanthiR, TsaiT, MehtaRC, DeLucaPP. Adsorption of salmon calcitonin to PLGA microspheres. Pharm. Res.12(7), 1072–1076 (1995).
  • Mehta RC , JeyanthiR, CalisS, ThanooBC, BurtonKW, DeLucaPP. Biodegradable microspheres as depot system for parenteral delivery of peptide drugs. J. Control. Release29, 375–384 (1994).
  • Jiang G , WooBH, KangF, SinghJ, DeLucaPP. Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. J. Control. Release79, 137–145 (2002).
  • Jiang W , SchwendemanSP. Stabilisation and controlled release of bovine serum albumin encapsulated in poly(D,L lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res.18(6), 878–885 (2001).
  • Diaz RV , SorianoI, DelgadoA, LlabresM, EvoraC. Effect of surfactant agents on the release of 125I-bovine calcitonin from PLGA microspheres: in vitro–in vivo study. J. Control. Release43, 59–64 (1997).
  • De Rosa G , IommelliR, La Rotonda MI, Miro A, Quaglia F. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres. J. Control. Release69, 283–295 (2000).
  • Chan YP , MeyrueixR, KravtzoffR, NicolasF, LundstromK. Review on Medusa®: a polymer-based sustained release technology for protein and peptide drugs. Expert Opin. Drug Del.4(4), 441–451 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.