6,264
Views
1
CrossRef citations to date
0
Altmetric
Review

Peptides for Specific Intracellular Delivery and Targeting of Nanoparticles: Implications for Developing nanoparticle-mediated Drug Delivery

, , , , &
Pages 411-433 | Published online: 15 Sep 2010

Bibliography

  • Yang W , PetersJI, WilliamsIII RO. Inhaled nanoparticles – a current review. Int. J. Pharm.356(1–2), 239–247 (2008).
  • Ganta S , DevalapallyH, ShahiwalaA, AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release126(3), 187–204 (2008).
  • Jabr-Milane L , van Vlerken L, Devalapally H et al. Multi-functional nanocarriers for targeted delivery of drugs and genes. J. Control. Release130(2), 121–128 (2008).
  • Zhou SF , DiYM, ChanEet al. Clinical pharmacogenetics and potential application in personalized medicine. Curr. Drug Metab. 9(8), 738–784 (2008).
  • Sawant RM , HurleyJP, SalmasoSet al. ‘SMART‘ drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem. 17(4), 943–949 (2006).
  • Kale AA , TorchilinVP. Design, synthesis, and characterization of pH-sensitive PEG–PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the pH stability of PEG–PE conjugates. Bioconjugate Chem.18(2), 363–370 (2007).
  • Sethuraman VA , BaeYH. Tat peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release118(2), 216–224 (2007).
  • Sethuraman VA , LeeMC, BaeYH. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm. Res.25(3), 657–666 (2008).
  • Liu K -K, Wang C-C, Cheng C-L, Chao J-I. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials30(26), 4249–4259 (2009).
  • Jaiswal JK , MattoussiH, MauroJM, SimonSM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21(1), 47–51 (2003).
  • Shukla R , BansalV, ChaudharyM, BasuA, BhondeRR, SastryM. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21(23), 10644–10654 (2005).
  • Chen FQ , GerionD. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett.4(10), 1827–1832 (2004).
  • Lin J , ChenR, FengSet al. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 25(2), 388–394 (2009).
  • Kanazawa T , TakashimaY, MurakoshiM, NakaiY, OkadaH. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal. Int. J. Pharm.379(1), 187–195 (2009).
  • Atul P , SomaP, Kailash Chand G. Recent trends in non-viral vector-mediated gene delivery. Biotechnol. J.4(11), 1559–1572 (2009).
  • Zhang Y , YuLC. Single-cell microinjection technology in cell biology. Bioessays30(6), 606–610 (2008).
  • Zhang Y , YuLC. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotech.19(5), 506–510 (2008).
  • Yao N , XiaoW, WangXet al. Discovery of targeting ligands for breast cancer cells using the one-bead one-compound combinatorial method. J. Med. Chem. 52(1), 126–133 (2009).
  • Medintz I . Universal tools for biomolecular attachment to surfaces. Nat. Mater.5(11), 842–842 (2006).
  • Delehanty JB , MattoussiH, MedintzIL. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem.393(4), 1091–1105 (2009).
  • Delehanty JB , BoenemanK, BradburneCE, RobertsonK, MedintzIL. Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin. Drug Del.6(10), 1091–1112 (2009).
  • Aubin-Tam ME , Hamad-SchifferliK. Structure and function of nanoparticle-protein conjugates. Biomed. Mater.3(3), 034001 (2008).
  • Bioconjugate Techniques. Hermanson GT (Ed.). Academic Press, San Diego, CA, USA (2008).
  • Sapsford KE , BertiL, MedintzIL. Fluorescence spectroscopy: applications in chemical biology. In: Wiley Encyclopedia of Chemical Biology. Begley TP (Ed.). Wiley Publishers, NY, USA (2008).
  • Rozenzhak SM , KadakiaMP, CasertaTM, WestbrookTR, StoneMO, NaikRR. Cellular internalization and targeting of semiconductor quantum dots. Chem. Comm. (17), 2217–2219 (2005).
  • Wagner SC , RoskampM, ColfenH, BottcherC, SchlechtS, KokschB. Switchable electrostatic interactions between gold nanoparticles and coiled coil peptides direct colloid assembly. Org. Biomol. Chem.7(1), 46–51 (2009).
  • Daniel MC , AstrucD. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104(1), 293–346 (2004).
  • Love JC , EstroffLA, KriebelJK, NuzzoRG, WhitesidesGM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev.105(4), 1103–1169 (2005).
  • Pinaud F , KingD, Moore H-P, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc.126(19), 6115–6123 (2004).
  • Dif A , BoulmedaisF, PinotMet al. Small and stable peptidic PEGylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry. J. Am. Chem. Soc. 131(41), 14738–14746 (2009).
  • Hochuli E , BannwarthW, DobeliH, GentzR, StuberD. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnol.6, 1321–1325 (1988).
  • Sapsford KE , PonsT, MedintzILet al. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J. Phys. Chem. C , 111(31), 11528–11538 (2007).
  • Medintz IL , ClappAR, BrunelFMet al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater. 5(7), 581–589 (2006).
  • Sapsford KE , FarrellD, SunS, RasoolyA, MattoussiH, MedintzIL. Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sensor. Actuat. B-Chem.139(1), 13–21 (2009).
  • Delehanty JB , MedintzIL, PonsT, BrunelFM, DawsonPE, MattoussiH. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjugate Chem.17(4), 920–927 (2006).
  • Medintz IL , PonsT, DelehantyJBet al. Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjugate Chem. 19(9), 1785–1795 (2008).
  • Xu C , XuK, GuHet al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126(32), 9938–9939 (2004).
  • Sarikaya M , TamerlerC, SchwartzDT, BaneyxFO. Materials assembly and formation using engineered polypeptides. Ann. Rev. Mater. Res.34, 373–408 (2004).
  • Peelle BR , KraulandEM, WittrupKD, BelcherAM. Design criteria for engineering inorganic material-specific peptides. Langmuir21(15), 6929–6933 (2005).
  • Hainfeld JF , LiuW, HalseyC, FreimuthP, PowellRD. Ni-NTA-gold clusters target His-tagged proteins. J. Struct. Biol.127(2), 185–198 (1999).
  • Kim J , ParkHY, KimJet al. Ni-nitrilotriacetic acid-modified quantum dots as a site-specific labeling agent of histidine-tagged proteins in live cells. Chem. Comm. (16), 1910–1912 (2008).
  • Patel JD , O‘CarraR, JonesJ, WoodwardJG, MumperRJ. Preparation and characterization of nickel nanoparticles for binding to his-tag proteins and antigens. Pharmaceut. Res.24(2), 343–352 (2007).
  • Kim SH , JeyakumarM, KatzenellenbogenJA. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling. J. Am. Chem. Soc.129(43), 13254–13264 (2007).
  • Medintz IL , BertiL, PonsTet al. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett. 7(6), 1741–1748 (2007).
  • Wolfgang HB , RobertS. ‘Click‘ chemistry in polymer and material science: an update. Macromo. Rapid Comm.29(12–13), 952–981 (2008).
  • Prasuhn DE , Blanco-CanosaJB, VoraGJet al. Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots. ACS Nano 4(1), 267–278 (2010).
  • Chen I , TingAY. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotech.16(1), 35–40 (2005).
  • Stachler MD , ChenI, TingAY, BartlettJS. Site-specific modification of AAV vector particles with biophysical probes and targeting ligands using biotin ligase. Mol. Ther.16(8), 1467–1473 (2008).
  • Pons T , MedintzIL, SapsfordKEet al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 7(10), 3157–3164 (2007).
  • Green M , LoewensteinPM. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell55(6), 1179–1188 (1988).
  • Frankel AD , PaboCO. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell55(6), 1189–1193 (1988).
  • Vives E , BrodinP, LebleuB. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem.272(25), 16010–16017 (1997).
  • Schwarze SR , HruskaKA, DowdySF. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol.10(7), 290–295 (2000).
  • Vives E . Cellular uptake of the Tat peptide: an endocytosis mechanism following ionic interactions. J. Mol. Recognit.16(5), 265–271 (2003).
  • Vives E , RichardJP, RispalC, LebleuB. Tat peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci.4(2), 125–132 (2003).
  • Vivès E , SchmidtJ, PèlegrinA. Cell-penetrating and cell-targeting peptides in drug delivery. BBA Rev. Cancer, 1786(2), 126–138 (2008).
  • Joliot A , PernelleC, Deagostini-BazinH, ProchiantzA. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl Acad. Sci. USA88(5), 1864–1868 (1991).
  • Elliott G , O‘HareP. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell88(2), 223–233 (1997).
  • Oehlke J , SchellerA, WiesnerBet al. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta 1414(1–2), 127–139 (1998).
  • Futaki S , SuzukiT, OhashiWet al. Arginine-rich peptides. an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276(8), 5836–5840 (2001).
  • Console S , MartyC, Garcia-EcheverriaC, SchwendenerR, Ballmer-HoferK. Antennapedia and HIV transactivator of transcription (TAT) ‘protein transduction domains‘ promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem.278(37), 35109–35114 (2003).
  • Lundberg M , WikstromS, JohanssonM. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther.8(1), 143–150 (2003).
  • Gupta B , LevchenkoTS, TorchilinVP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug. Deliv. Rev.57(4), 637–651 (2005).
  • Tyagi M , RusnatiM, PrestaM, GiaccaM. Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem.276(5), 3254–3261 (2001).
  • Tkachenko AG , XieH, LiuYet al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem. 15(3), 482–490 (2004).
  • de la Fuente JM , FandelM, BerryCCet al. Quantum dots protected with tiopronin: a new fluorescence system for cell-biology studies. Chembiochem. 6(6), 989–991 (2005).
  • Berry CC , de la Fuente JM, Mullin M, Chu SWL, Curtis ASG. Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE T. Nanobiosci.6(4), 262–269 (2007).
  • Richard JP , MelikovK, VivesEet al. Cell-penetrating peptides. A re-evaluation of the mechanism of cellular uptake. J. Biol. Chem. 278(1), 585–590 (2003).
  • Ruan G , AgrawalA, MarcusAI, NieS. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc.129(47), 14759–14766 (2007).
  • Lei Y , TangH, YaoL, YuR, FengM, ZouB. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chem.19(2), 421–427 (2008).
  • Lewin M , CarlessoN, TungCHet al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000).
  • Liu Y , WangCY, KongXHet al. Novel multifunctional polyethylene glycol-transactivating-transduction protein-modified liposomes cross the blood-spinal cord barrier after spinal cord injury. J. Drug Target. 18(6), 420–429 (2009).
  • Han L , ZhangA, WangH, PuP, KangC, ChangJ. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum. Gene Ther.21(4), 417–426 (2009).
  • Song HP , YangJY, LoSLet al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 31(4), 769–778 (2009).
  • Engel J , OdermattE, EngelAet al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol. Biol. 150(1), 97–120 (1981).
  • Hood JD , ChereshDA. Role of integrins in cell invasion and migration. Nat. Rev. Cancer, 2(2), 91–100 (2002).
  • Desgrosellier JS , ChereshDA. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 10(1), 9–22 (2010).
  • Di Minno G , CoppolaA, Di Minno MN, Poon MC. Glanzmann‘s thrombasthenia (defective platelet integrin αIIbβ3): proposals for management between evidence and open issues. Thromb. Haemostasis, 102(6), 1157–1164 (2009).
  • Mizejewski GJ . Role of integrins in cancer: survey of expression patterns. P. Soc. Exp. Biol. Med.222(2), 124–138 (1999).
  • Lieleg O , Lopez-GarciaM, SemmrichC, AuernheimerJ, KesslerH, BauschAR. Specific integrin labeling in living cells using functionalized nanocrystals. Small3(9), 1560–1565 (2007).
  • Ko MH , KimS, KangWJ et al. In vitro derby imaging of cancer biomarkers using quantum dots. Small5(10), 1207–1212 (2009).
  • Zako T , NagataH, TeradaNet al. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem. Biophys. Res. Co. 381(1), 54–58 (2009).
  • Montet X , Montet-AbouK, ReynoldsF, WeisslederR, JosephsonL. Nanoparticle imaging of integrins on tumor cells. Neoplasia8(3), 214–222 (2006).
  • Chen K , XieJ, XuHet al. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials 30(36), 6912–6919 (2009).
  • Cai W , ShinDW, ChenKet al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6(4), 669–676 (2006).
  • Shah BS , ClarkPA, MoioliEK, StroscioMA, MaoJJ. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett.7(10), 3071–3079 (2007).
  • Srinivasan R , MarchantRE, GuptaAS. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J. Biomed. Mater. Res.93(3), 1004–1015 (2009) (Epub ahead of print).
  • Temming K , SchiffelersRM, MolemaG, KokRJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist. Update8(6), 381–402 (2005).
  • Smith BR , ChengZ, DeA, KohAL, SinclairR, GambhirSS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett.8(9), 2599–2606 (2008).
  • Cai W , ChenX. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc.3(1), 89–96 (2008).
  • Almutairi A , RossinR, ShokeenMet al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc. Natl Acad. Sci. USA 106(3), 685–690 (2009).
  • van Tilborg GA , MulderWJ, van der Schaft DW et al. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia10(12), 1459–1469 (2008).
  • Schottelius M , LauferB, KesslerH, WesterHJ. Ligands for mapping αvβ3 integrin expression in vivo. Accounts Chem. Res.42(7), 969–980 (2009).
  • Montet X , FunovicsM, Montet-AbouK, WeisslederR, JosephsonL. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem.49(20), 6087–6093 (2006).
  • Murphy EA , MajetiBK, BarnesLAet al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl Acad. Sci. USA 105(27), 9343–9348 (2008).
  • Wang Z , ChuiWK, HoPC. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm. Res.26(5), 1162–1171 (2009).
  • Danhier F , VromanB, LecouturierNet al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control. Release 140(2), 166–173 (2009).
  • Sugahara KN , TeesaluT, KarmaliPPet al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6), 510–520 (2009).
  • Suk JS , SuhJ, ChoyK, LaiSK, FuJ, HanesJ. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials27(29), 5143–5150 (2006).
  • Zuber G , DontenwillM, BehrJP. Synthetic virus-like particles for targeted gene delivery to αvβ3 integrin-presenting endothelial cells. Mol. Pharmacol.6(5), 1544–1552 (2009).
  • Zhou QH , WuC, ManickamDS, OupickyD. Evaluation of pharmacokinetics of bioreducible gene delivery vectors by real-time PCR. Pharmceut. Res.26(7), 1581–1589 (2009).
  • Wang XL , XuR, WuX, GillespieD, JensenR, LuZR. Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol. Pharmacol.6(3), 738–746 (2009).
  • Schiffelers RM , AnsariA, XuJet al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32(19), e149 (2004).
  • Morris MC , DepollierJ, MeryJ, HeitzF, DivitaG. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol.19(12), 1173–1176 (2001).
  • Simeoni F , MorrisMC, HeitzF, DivitaG. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res.31(11), 2717–2724 (2003).
  • Morris MC , GrosE, Aldrian-HerradaGet al. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res. 35(7), e49 (2007).
  • Deshayes S , HeitzA, MorrisMC, CharnetP, DivitaG, HeitzF. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry43(6), 1449–1457 (2004).
  • Munoz-Morris MA , HeitzF, DivitaG, MorrisMC. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochem. Biophys. Res. Co.355(4), 877–882 (2007).
  • Morris MC , DeshayesS, HeitzF, DivitaG. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol. Cell100(4), 201–217 (2008).
  • Mattheakis LC , DiasJM, ChoiYJet al. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327(2), 200–208 (2004).
  • Chang JC , SuHL, HsuSH. The use of peptide-delivery to protect human adipose-derived adult stem cells from damage caused by the internalization of quantum dots. Biomaterials29(7), 925–936 (2008).
  • An JJ , LeeYP, KimSYet al. Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275(6), 1296–1308 (2008).
  • Yune TY , LeeJY, JiangMH, KimDW, ChoiSY, OhTH. Systemic administration of PEP-1-SOD1 fusion protein improves functional recovery by inhibition of neuronal cell death after spinal cord injury. Free Radical Biol. Med.45(8), 1190–1200 (2008).
  • Zhang YE , WangJN, TangJM et al. In vivo protein transduction: delivery of PEP-1-SOD1 fusion protein into myocardium efficiently protects against ischemic insult. Mol. Cell.27(2), 159–166 (2009).
  • Hoshino A , FujiokaK, OkuTet al. Quantum dots targeted to the assigned organelle in living cells. Microbiol. Immunol. 48(12), 985–994 (2004).
  • Lin SY , ChenNT, SumSP, LoLW, YangCS. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem. Comm.39, 4762–4764 (2008).
  • Xie W , WangL, ZhangYet al. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Bioconjugate Chem. 20(4), 768–773 (2009).
  • Mandal D , MaranA, YaszemskiMJ, BolanderME, SarkarG. Cellular uptake of gold nanoparticles directly cross-linked with carrier peptides by osteosarcoma cells. J. Mat. Sci.20(1), 347–350 (2009).
  • Boulanger C , Di Giorgio C, Vierling P. Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection. Eur. J. Med. Chem.40(12), 1295–1306 (2005).
  • Wiseman JW , ScottES, ShawPA, ColledgeWH. Enhancement of gene delivery to human airway epithelial cells in vitro using a peptide from the polyoma virus protein VP1. J. Gene Med.7(6), 759–770 (2005).
  • Lenz C , SondergaardL, GrimmelikhuijzenCJ. Molecular cloning and genomic organization of a novel receptor from Drosophila melanogaster structurally related to mammalian galanin receptors. Biochem. Biophys. Res. Co.269(1), 91–96 (2000).
  • Biju V , MuraleedharanD, NakayamaKet al. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir 23(20), 10254–10261 (2007).
  • Anas A , OkudaT, KawashimaNet al. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS Nano 3(8), 2419–2429 (2009).
  • Kumar P , WuH, McBrideJLet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149), 39–43 (2007).
  • Liu Y , HuangR, HanLet al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30(25), 4195–4202 (2009).
  • Chang E , ThekkekN, YuWW, ColvinVL, DrezekR. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small2(12), 1412–1417 (2006).
  • Warheit DB . How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci.101(2), 183–185 (2008).
  • Hood E . Nanotechnology: looking as we leap. Environ Health Perspect, 112(13), A740–749 (2004).
  • Lewinski N , ColvinV, DrezekR. Cytotoxicity of nanoparticles. Small4(1), 26–49 (2008).
  • Duconge F , PonsT, PestourieCet al. Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjugate Chem. 19(9), 1921–1926 (2008).
  • Duan H , NieS. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc.129(11), 3333–3338 (2007).
  • Kato T , OkadaS, YutakaT, YabuuchiH. The effects of sucrose loading on lysosomal hydrolases. Mol. Cell. Biochem.60(1), 83–98 (1984).
  • Ferrari V , CutlerDJ. Kinetics and thermodynamics of chloroquine and hydroxy-chloroquine transport across the human erythrocyte membrane. Biochem. Pharmacol.41(1), 23–30 (1991).
  • Stroh M , ZimmerJP, DudaDGet al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11(6), 678–682 (2005).
  • Tkachenko AG , XieH, LiuYet al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconj. Chem. 15(3), 482–490 (2004).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.