73
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Use of Encapsulated Cells for Effective Delivery of Therapeutics

, , &
Pages 387-396 | Published online: 15 Sep 2010

Bibliography

  • Saltzman WL , OlbrichtW. Building drug delivery into tissue engineering. Nat. Rev. Drug Discov.1, 177–186 (2002).
  • Orive G , AnituaE, PedrazJL, EmerichE. Advances in biomaterials for promoting brain repair and regeneration. Nat. Rev. Neurosci.10, 682–692 (2009).
  • Street J , BaoM, de Guzman L et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl Acad. Sci. USA99, 9656–9661 (2002).
  • Basu P . Technologies that deliver. Nat. Med.9, 1100–1101 (2003).
  • Biondi M , UngaroF, QuagliaF, NettiPA. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev.2, 229–242 (2008).
  • Anitua E , SánchezM, OriveG, AndiaI. Delivering growth factors for therapeutics. Trends. Pharmacol. Sci29, 37–41 (2008).
  • Tessmar JK , GöpferichAM. Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev.59, 274–291 (2007).
  • Orive G , HernándezRM, GascónAR, Domínguez-GilA, PedrazJL. Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol.14, 659–664 (2003).
  • Orive G , GascónAR, HernándezRM, Domínguez-GilA, PedrazJL. Techniques: new approaches to the delivery of biopharmaceuticals. Trends Pharmacol. Sci.25, 382–387 (2004).
  • Bisceglie V . Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr Krebsforsch40, 122–140 (1933).
  • Chang TMS . Semipermeable microcapsules. Science146, 524–525 (1964).
  • Chick WL , LikeAA, LaurisV. β cell culture on synthetic capillaries: an artificial endocrine pancreas. Science187, 847–848 (1975).
  • Lim F , SunAM. Microencapsulated islets as bioartificial endocrine pancreas. Science210, 908–909 (1980).
  • Prakash S , ChangTMS. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med.2, 883–887 (1996).
  • Sun Y , MaX, ZhouD, VacekI, SunAM. Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Invest.98, 1417–1422 (1996).
  • Hortelano G , Al-HendyA, OfosuFA, ChangPL. Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood87, 5095–5103 (1996).
  • Soon-Shiong P , HeintzRE, MeridethNet al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950–951 (1994).
  • Calafiore R , BastaG, LucaGet al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with Type 1 diabetes: first two cases. Diabetes Care 1, 137–138 (2006).
  • Löhr M , HoffmeyerA, KrögerJet al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 357, 1591–1592 (2001).
  • Orive G , HernándezRM, GascónARet al. Cell encapsulation: promise and progress. Nat. Med. 9, 104–107 (2003).
  • Orive G , HernándezRM, GascónARet al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 22, 87–92 (2004).
  • Zimmermann U , KlockG, FederlinKet al. Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 13, 269–274 (1992).
  • De Vos P , De Haan BJ, Wolters GHJ, Strubbe JH, Van Schilfgaarde R. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia40, 262–270 (1997).
  • Lacík I . Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans. Aust. J. Chem.59, 508–524 (2006).
  • De Vos P , GemeinerP, BuckoMet al. Multiscale requirements for bioencapsulation in biomedicine and biotechnology. Biomaterials 30, 2559–2570 (2009).
  • Chang PL , BowieKMM. Development of engineered cells for implantation in gene therapy. Adv. Drug Deliv. Rev.33, 31–43 (1998).
  • Orive G , De Castro M, Ponce S, Hernández RM, Gascón AR, Pedraz JL. Long-term expression of erythopoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol. Ther.12, 283–289 (2005).
  • Murua A , De Castro M, Orive G, Hernández RM, Pedraz JL. In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate poly-L-lysine alginate microcapsules. Biomacromolecules8, 3302–3307 (2007).
  • Orive G , De Castro M, Kong J et al. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J. Control. Release135, 203–210 (2009).
  • Murua A , OriveG, HernándezRM, PedrazJL. Xenogeneic transplantation of Epo-secreting cells immobilized in microcapsules using transient immunosuppression. J. Control Release137, 174–178 (2009).
  • Xu W , LiuL, CharlesIG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J.16, 213–215 (2002).
  • Cirone P , BourgeoisJM, AustinRC, ChangPL. A novel approach to tumor suppression with microencapsulated recombinant cells. Hum. Gene Ther.13, 1157–1166 (2002).
  • Benoit DS , SchwartzMP, DurneyAR, AnsethKS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater.7, 816–823 (2008).
  • Lund AW , BushJA, PlopperGE, StegemannJP. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J. Biomed. Mater. Res. B Appl. Biomater.87, 213–221 (2008).
  • Ding HF , LiuR, LiBG, LouJR, DaiKR, TangTT. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem. Biophys. Res. Commun.362, 923–927 (2007).
  • Babister JC , TareRS, GreenDW, InglisS, MannS, OreffoROC. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using ‘bead-in-bead‘ polysaccharide capsules. Biomaterials29, 58–65 (2008).
  • Goren A , DahanN, GorenE, BaruchL, MachlufM. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J.24, 22–31 (2010).
  • Hernández RM , OriveG, MuruaA, PedrazJL. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. (2010) (In Press).
  • Tam SK , DusseaultJ, PolizuS, MénardM, HalléJP, YahiaL. Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation. Biomaterials27, 1296–1305 (2006).
  • Orive G , TamSK., Pedraz JL, Hallé JP. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials27, 3691–3700 (2006).
  • Langlois G , DusseaultJ, BilodeauS, TamSK, MagassoubaD, HalléJP. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater.5, 3433–3440 (2009).
  • Schnoll-Bitai I , UllmerR, HrebicekT, RizziA, LacikI. Characterization of the molecular mass distribution of pullulans bymatrix-assisted laser desorption/ionization time-of-flight mass spectrometry using 2,5-dihydroxybenzoic acid butylamine (DHBB) as liquidmatrix. Rapid Commun. Mass Spectrom.22, 2961–2970 (2008).
  • Grasdalen H , LarsenB, SmidsrodO. 13C-NMR studies of monomeric composition and sequence in alginate. Carbohydr. Res.89, 179–191 (1981).
  • Brissova M , LacikI, PowersAC, AnilkumarAV, WangT. Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res.39, 61–70 (1998).
  • Kulseng B , ThuB, EspevikT, Skjåk-BrækG. Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant.6, 387–394 (1997).
  • Morch YA , DonatiI, StrandBL, Skjåk-BrækG. Effect of Ca, Ba and Sr on alginate microbeads. Biomacromolecules7, 1471–1480 (2006).
  • De Castro M , OriveG, HernandezRM, GasconAR, PedrazJL. Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J. Microencapsul.22, 303–315 (2005).
  • Thanos CG , BintzBE, EmerichDF. Stability of alginate–polyornithine microcapsules is profoundly dependent on the site of transplantation. J. Biomed. Mater. Res.A 81, 1–11 (2007).
  • Kim K , LiuX, ZhangY, ChengJ, YuWX, SunY. Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed. Microdevices11, 421–127 (2009).
  • De Vos P , De Haan BJ, Kamps JA, Faas MM, Kitano T. Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J. Biomed. Mater. Res.80, 813–819 (2007).
  • Tam SK , DusseaultJ, PolizuS, MenardM, HalleJP, YahiaL. Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials26, 6950–6961 (2005).
  • Dufrane D , SteenbergheM, GoebbelsRM, SaliezA, GuiotY, GianelloP. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials27, 3201–3208 (2006).
  • Sakai S , MuC, KawabataK, HashimotoI, KawakamiK. Biocompatibility of subsieve-size capsules versus conventional-size microcapsules. J. Biomed. Mater. Res.78A, 394–398 (2006).
  • Bunger CM , TiefenbachB, JahnkeAet al. Deletion of the tissue response against alginate-PLL capsules by temporary release of co-encapsulated steroids. Biomaterials 26, 2353–2360 (2005).
  • Risbud MV , BhargavaS, BhondeRR. In vivo biocompatibility evaluation of cellulose macrocapsules for islet immunoisolation: implications of low molecular weight cut-off. J. Biomed. Mater. Res.6, 86–92 (2003).
  • Robitaille R , LeblondFA, HenleyN, Prud‘hommeGJ, DrobetskyE, HallJP. Alginate-poly-L-lysine microcapsule biocompatibility: a novel RT-PCR method for cytokine gene expression analysis in pericapsular infiltrates. J. Biomed. Mater. Res.45, 223–230 (1999).
  • Luong Van E , GrondahlL, NurcombeV, CoolS. In vitro biocompatibility and bioactivity of microencapsulated heparansulfate. Biomaterials28, 2127–2136 (2007).
  • Ponce S , OriveG, HernandezRMet al. Chemistry and the biological response against immunoisolating alginatepolycation capsules of different composition. Biomaterials 27, 4831–4839 (2006).
  • Juste S , LessardM, HenleyN, MenardM, HalleJP. Effect of poly-L-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vitro method. J. Biomed. Mater. Res.72A, 389–398 (2005).
  • Hurteaux R , Edwards Levy F, Laurent Maquin D, Levy MC. Coating alginate microspheres with a serum albumin–alginate membrane: application to the encapsulation of a peptide. Eur. J. Pharm. Sci.24, 187–197 (2005).
  • Elliott RB , EscobarL, TanPL, MuzinaM, ZwineS, BuchananC. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation14, 157–161 (2007).
  • Lee DY , NamJH, ByunY. Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials28, 1957–1966 (2007).
  • Bikram M , Fouletier-DillingC, HippJAet al. Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann. Biomed. Eng. 35, 796–807 (2007).
  • Grellier M , GranjaPL, FricainJet al. The effect of the co-immobilization of human osteoprogenitors and endotelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 30, 3271–3278 (2009).
  • Wang C , GongY, ZhongY, YaoY, SuK, WangD. The control of anchorage-dependent cell behaviour within a hydrogel/microcarrier system in a osteogenic model. Biomaterials30, 2259–2269 (2009).
  • Kindi A , ChenGY, AsenjoJFet al. Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Presented at: Canadian Cardiovascular Congress. Quebec City, PQ, Canada, 20–24 October 2007.
  • Kindi A , ChenGY, AsenjoJFet al. Cellular cardiomyoplasty: optimizing cellular dosage and retention by microencapsulation. Presented at: American Heart Association Scientific Sessions. Orlando, FL, USA, 4–7 November 2007.
  • Paul A , GeY, PrakashS, Shum-TimD. Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regen. Med.4, 733–745 (2009).
  • Stover NP , WattsRL. Spheramine for treatment of Parkinson‘s disease, Neurotherapeutics5, 252–259 (2008).
  • Wang T , AdcockJ, KühtreiberWet al. Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85 331–337 (2008).
  • Zang H , ZhuSJ, WangW, WeyYJ, HuSS. Transplantation of microencapsulated genetically modified xenogenic cells augments angiogenesis and improves heart function. Gene Ther.15, 40–48 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.