604
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Ophthalmic Drug Delivery

, &
Pages 435-456 | Published online: 15 Sep 2010

Bibliography

  • Rein DB , WittenbornJS, ZhangX, HoneycuttAA, LesesneSB, SaaddineJ. Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch. Ophthalmol.127(4), 533–540 (2009).
  • Nowak JZ . Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol. Rep.58(3), 353–363 (2006).
  • VisionGain. World ophthalmic pharmaceutical market 2010–2025. Visiongain Reports (2010).
  • Cheruvu NP , AmriteAC, KompellaUB. Effect of diabetes on trans-scleral delivery of celecoxib. Pharm. Res.26(2), 404–414 (2009).
  • Amrite AC , EdelhauserHF, SinghSR, KompellaUB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol. Vis.14, 150–160 (2008).
  • Cheruvu NP , AmriteAC, KompellaUB. Effect of eye pigmentation on trans-scleral drug delivery. Invest. Ophthalmol. Vis. Sci.49(1), 333–341 (2008).
  • Amrite AC , EdelhauserHF, KompellaUB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest. Ophthalmol. Vis. Sci.49(1), 320–332 (2008).
  • Kador PF , RandazzoJ, BabbTet al. Topical aldose reductase inhibitor formulations for effective lens drug delivery in a rat model for sugar cataracts. J. Ocul. Pharmacol. Ther. 23(2), 116–123 (2007).
  • Amrite AC , AyalasomayajulaSP, CheruvuNP, KompellaUB. Single periocular injection of celecoxib-plga microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest. Ophthalmol. Vis. Sci.47(3), 1149–1160 (2006).
  • Ayalasomayajula SP , KompellaUB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur. J. Pharmacol.511(2–3), 191–198 (2005).
  • Ayalasomayajula SP , KompellaUB. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared with systemic administration. Pharm. Res.21(10), 1797–1804 (2004).
  • Koushik K , KompellaUB. Preparation of large porous deslorelin-plga microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm. Res.21(3), 524–535 (2004).
  • Sunkara G , AyalasomayajulaSP, RaoCS, VennerstromJL, DeruiterJ, KompellaUB. Systemic and ocular pharmacokinetics of N-4-benzoylaminophenylsulfonylglycine (BAPSG), a novel aldose reductase inhibitor. J. Pharm. Pharmacol.56(3), 351–358 (2004).
  • Aukunuru JV , SunkaraG, AyalasomayajulaSP, DeruiterJ, ClarkRC, KompellaUB. A biodegradable injectable implant sustains systemic and ocular delivery of an aldose reductase inhibitor and ameliorates biochemical changes in a galactose-fed rat model for diabetic complications. Pharm. Res.19(3), 278–285 (2002).
  • Proksch JW , GranvilCP, Siou-MermetR, ComstockTL, PaternoMR, WardKW. Ocular pharmacokinetics of besifloxacin following topical administration to rabbits, monkeys, and humans. J. Ocul. Pharmacol. Ther.25(4), 335–344 (2009).
  • Lee VH , RobinsonJR. Topical ocular drug delivery: recent developments and future challenges. J. Ocul. Pharmacol.2(1), 67–108 (1986).
  • Macha S , MitraAK. Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique. Exp. Eye Res.72(3), 289–299 (2001).
  • Macha S , DuvvuriS, MitraAK. Ocular disposition of novel lipophilic diester prodrugs of ganciclovir following intravitreal administration using microdialysis. Curr. Eye. Res.28(2), 77–84 (2004).
  • Dias CS , MitraAK. Posterior segment ocular pharmacokinetics using microdialysis in a conscious rabbit model. Invest. Ophthalmol. Vis. Sci.44(1), 300–305 (2003).
  • Rittenhouse KD , PeifferRL Jr, Pollack GM. Evaluation of microdialysis sampling of aqueous humor for in vivo models of ocular absorption and disposition. J. Pharm. Biomed. Anal.16(6), 951–959 (1998).
  • Pearson PA , JaffeGJ, MartinDFet al. Evaluation of a delivery system providing long-term release of cyclosporine. Arch. Ophthalmol. 114(3), 311–317 (1996).
  • Acheampong AA , ShackletonM, Tang-LiuDD, DingS, SternME, DeckerR. Distribution of cyclosporin a in ocular tissues after topical administration to albino rabbits and beagle dogs. Curr. Eye Res.18(2), 91–103 (1999).
  • Wei G , XuH, DingPT, LiSM, ZhengJM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and g scintigraphic studies. J. Control. Release83(1), 65–74 (2002).
  • Klyce SD , CrossonCE. Transport processes across the rabbit corneal epithelium: a review. Curr. Eye Res.4(4), 323–331 (1985).
  • Kompella UB , KimKJ, LeeVH. Active chloride transport in the pigmented rabbit conjunctiva. Curr. Eye Res.12(12), 1041–1048 (1993).
  • Wang W , SasakiH, ChienDS, LeeVH. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr. Eye Res.10(6), 571–579 (1991).
  • Raghava S , HammondM, KompellaUB. Periocular routes for retinal drug delivery. Expert Opin. Drug Deliv.1(1), 99–114 (2004).
  • Rao VR , PrescottE, ShelkeNBet al. Delivery of SAR 1118 to retina via ophthalmic drops and its effectiveness in reduction of retinal leukostasis and vascular leakiness in rat streptozotocin (STZ) model of diabetic retinopathy (DR). Invest. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-5144 (2010) (Epub ahead of print).
  • Hariprasad SM , MielerWF, HolzER. Vitreous and aqueous penetration of orally administered gatifloxacin in humans. Arch. Ophthalmol.121(3), 345–350 (2003).
  • Olsen TW , FengX, WabnerKet al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am. J. Ophthalmol. 142(5), 777–787 (2006).
  • Felt O , FurrerP, MayerJM, PlazonnetB, BuriP, GurnyR. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm.180(2), 185–193 (1999).
  • Meseguer G , GurnyR, BuriP, RozierA, PlazonnetB. γ scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int. J. Pharm.95, 229–234 (1993).
  • Yamamura K , SasakiH, NakashimaMet al. Characterization of ocular pharmacokinetics of β-blockers using a diffusion model after instillation. Pharm. Res. 16(10), 1596–1601 (1999).
  • Akpek EK , VittitowJ, VerhoevenRSet al. Ocular surface distribution and pharmacokinetics of a novel ophthalmic 1% azithromycin formulation. J. Ocul. Pharmacol. Ther. 25(5), 433–439 (2009).
  • Hornof MD , Bernkop-SchnurchA. In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits. J. Pharm. Sci.91(12), 2588–2592 (2002).
  • Maurice D . The effect of the low blink rate in rabbits on topical drug penetration. J. Ocul. Pharmacol. Ther.11(3), 297–304 (1995).
  • Witcherle O , LimD. Hydrophilic gels for biological use. Nature185, 117–118 (1960).
  • Lim L , LoughnanMS, SullivanLJ. Microbial keratitis associated with extended wear of silicone hydrogel contact lenses. Br. J. Ophthalmol.86(3), 355–357 (2002).
  • Hehl EM , BeckR, LuthardK, GuthoffR, DrewelowB. Improved penetration of aminoglycosides and fluorozuinolones into the aqueous humour of patients by means of acuvue contact lenses. Eur. J. Clin. Pharmacol.55(4), 317–323 (1999).
  • Sedlacek J . Possibility of the application of ophthalmic drugs with the use of gel contact lenses. Cesk. Oftalmol.21(6), 509–512 (1965).
  • Karlgard CC , JonesLW, MoresoliC. Ciprofloxacin interaction with silicon-based and conventional hydrogel contact lenses. Eye Contact Lens29(2), 83–89 (2003).
  • Karlgard CC , WongNS, JonesLW, MoresoliC. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-hema hydrogel contact lens materials. Int. J. Pharm.257(1–2), 141–151 (2003).
  • Kim J , ConwayA, ChauhanA. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials29(14), 2259–2269 (2008).
  • Haugen B , WernerL, RomanivNet al. Prevention of endophthalmitis by collagen shields presoaked in fourth-generation fluoroquinolones versus by topical prophylaxis. J. Cataract Refract. Surg. 34(5), 853–858 (2008).
  • Hiratani H , Alvarez-LorenzoC. Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J. Control. Release83(2), 223–230 (2002).
  • Alvarez-Lorenzo C , YanezF, Barreiro-IglesiasR, ConcheiroA. Imprinted soft contact lenses as norfloxacin delivery systems. J. Control. Release113(3), 236–244 (2006).
  • Ali M , HorikawaS, VenkateshS, SahaJ, HongJW, ByrneME. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J. Control. Release124(3), 154–162 (2007).
  • Danion A , BrochuH, MartinY, VermetteP. Fabrication and characterization of contact lenses bearing surface-immobilized layers of intact liposomes. J. Biomed. Mater. Res. A82(1), 41–51 (2007).
  • Danion A , ArsenaultI, VermetteP. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J. Pharm. Sci.96(9), 2350–2363 (2007).
  • Ciolino JB , HoareTR, IwataNGet al. A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50(7), 3346–3352 (2009).
  • Sano K , TokoroT, ImaiY. A new drug delivery system utilizing piggyback contact lenses. Acta. Ophthalmol. Scand.74(3), 243–248 (1996).
  • Gulsen D , ChauhanA. Dispersion of microemulsion drops in hema hydrogel: a potential ophthalmic drug delivery vehicle. Int. J. Pharm.292(1–2), 95–117 (2005).
  • Gulsen D , LiCC, ChauhanA. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res.30(12), 1071–1080 (2005).
  • Gulsen D , ChauhanA. Ophthalmic drug delivery through contact lenses. Invest. Ophthalmol. Vis. Sci.45(7), 2342–2347 (2004).
  • Kapoor Y , ThomasJC, TanG, JohnVT, ChauhanA. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Biomaterials30(5), 867–878 (2009).
  • Lim M , JacobsDS, RosenthalP, CarrasquilloKG. The boston ocular surface prosthesis as a novel drug delivery system for bevacizumab. Seminars in Ophthalmology24(3), 149–155 (2009).
  • Kim SW , HaBJ, KimEK, TchahH, KimTI. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology115(6), e33–38 (2008).
  • Ottiger M , ThielMA, FeigeU, LichtlenP, UrechDM. Efficient intraocular penetration of topical anti-TNF-α single-chain antibody (ESBA105) to anterior and posterior segment without penetration enhancer. Invest. Ophthalmol. Vis. Sci.50(2), 779–786 (2009).
  • Calonge M . The treatment of dry eye. Surv. Ophthalmol.45(Suppl. 2), S227–S239 (2001).
  • Balaram M , SchaumbergDA, DanaMR. Efficacy and tolerability outcomes after punctal occlusion with silicone plugs in dry eye syndrome. Am. J. Ophthalmol.131(1), 30–36 (2001).
  • Wei CP , AndersonJA, LeopoldI. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest. Ophthalmol. Vis. Sci.17(4), 315–321 (1978).
  • Kass MA , MandellAI, GoldbergI, PaineJM, BeckerB. Dipivefrin and epinephrine treatment of elevated intraocular pressure: a comparative study. Arch. Ophthalmol.97(10), 1865–1866 (1979).
  • Rautio J , KumpulainenH, HeimbachTet al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7(3), 255–270 (2008).
  • Hellberg MR , KeTL, HaggardK, KlimkoPG, DeanTR, GraffG. The hydrolysis of the prostaglandin analog prodrug bimatoprost to 17-phenyl-trinor pgf2a by human and rabbit ocular tissue. J. Ocul. Pharmacol. Ther.19(2), 97–103 (2003).
  • Netland PA , LandryT, SullivanEKet al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 132(4), 472–484 (2001).
  • Susanna R Jr, Chew P, Kitazawa Y. Current status of prostaglandin therapy: latanoprost and unoprostone. Surv. Ophthalmol.47(Suppl. 1), S97-S104 (2002).
  • Lallemand F , PerottetP, Felt-BaeyensOet al. A water-soluble prodrug of cyclosporine a for ocular application: a stability study. Eur. J. Pharm. Sci. 26(1), 124–129 (2005).
  • Lallemand F , Felt-BaeyensO, RudazSet al. Conversion of cyclosporine a prodrugs in human tears vs rabbits tears. Eur. J. Pharm. Biopharm. 59(1), 51–56 (2005).
  • Liu H , WangY, LiS. Advanced delivery of ciclosporin a: present state and perspective. Expert Opin. Drug Deliv.4(4), 349–358 (2007).
  • Olivero DK , DavidsonMG, EnglishRV, NasisseMP, JamiesonVE, GerigTM. Clinical evaluation of 1% cyclosporine for topical treatment of keratoconjunctivitis sicca in dogs. J. Am. Vet. Med. Assoc.199(8), 1039–1042 (1991).
  • Benitez Del Castillo JM , Del Aguila C, Duran S, Hernandez J, Garcia Sanchez J. Influence of topically applied cyclosporine a in olive oil on corneal epithelium permeability. Cornea13(2), 136–140 (1994).
  • Bourges JL , LallemandF, AglaEet al. Evaluation of a topical cyclosporine a prodrug on corneal graft rejection in rats. Mol. Vis. 12, 1461–1466 (2006).
  • Dey S , AnandBS, PatelJ, MitraAK. Transporters/receptors in the anterior chamber: pathways to explore ocular drug delivery strategies. Expert Opin. Biol. Ther.3(1), 23–44 (2003).
  • Janoria KG , GundaS, BodduSH, MitraAK. Novel approaches to retinal drug delivery. Expert Opin. Drug Deliv.4(4), 371–388 (2007).
  • Hosoya K , TachikawaM. Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm. Res.26(9), 2055–2065 (2009).
  • Ueda H , HoribeY, KimKJ, LeeVH. Functional characterization of organic cation drug transport in the pigmented rabbit conjunctiva. Invest. Ophthalmol. Vis. Sci.41(3), 870–876 (2000).
  • Karla PK , PalD, MitraAK. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells. Exp. Eye Res.84(1), 53–60 (2007).
  • Mannermaa E , VellonenKS, RyhanenTet al. Efflux protein expression in human retinal pigment epithelium cell lines. Pharm. Res. 26(7), 1785–1791 (2009).
  • Prasanna G , FortnerJ, XiangCet al. Ocular pharmacokinetics and hypotensive activity of pf-04475270, an ep4 prostaglandin agonist in preclinical models. Exp. Eye Res. 89(5), 608–617 (2009).
  • Gehlbach P , DemetriadesAM, YamamotoSet al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 10(8), 637–646 (2003).
  • Kompella UB , SundaramS, RaghavaS, EscobarER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol. Vis.12, 1185–1198 (2006).
  • Loftssona T , JarvinenT. Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev.36(1), 59–79 (1999).
  • Stefansson E , LoftssonaT. Cyclodextrins in eye drop formulations. J. Incl. Phenomena Macrocyclic Chem.44, 23–27 (2002).
  • Bary AR , TuckerIG, DaviesNM. Considerations in the use of hydroxypropyl-β-cyclodextrin in the formulation of aqueous ophthalmic solutions of hydrocortisone. Eur. J. Pharm. Biopharm.50(2), 237–244 (2000).
  • Loftsson T , FrithriksdottirH, StefanssonE, ThorisdottirS, GuthmundssonO, SigthorssonT. Topically effective ocular hypotensive acetazolamide and ethoxyzolamide formulations in rabbits. J. Pharm. Pharmacol.46(6), 503–504 (1994).
  • Cheeks L , KaswanRL, GreenK. Influence of vehicle and anterior chamber protein concentration on cyclosporine penetration through the isolated rabbit cornea. Curr. Eye Res.11(7), 641–649 (1992).
  • Loftsson T , FridriksdottirH, ThorisdottirS, StefanssonE. The effect of hydroxypropyl methylcellulose on release of dexamethazone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations. Int. J. Pharm.104, 181–184 (1994).
  • Kristinsson JK , FridriksdottirH, ThorisdottirS, SigurdardottirAM, StefanssonE, LoftssonT. Dexamethasone–cyclodextrin–polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest. Ophthalmol. Vis. Sci.37(6), 1199–1203 (1996).
  • Ashton P , PodderSK, LeeVH. Formulation influence on conjunctival penetration of four b blockers in the pigmented rabbit: a comparison with corneal penetration. Pharm. Res.8(9), 1166–1174 (1991).
  • Lee YH , LeeVH. Formulation influence on ocular and systemic absorption of topically applied atenolol in the pigmented rabbit. J. Ocul. Pharmacol.9(1), 47–58 (1993).
  • Scholz M , LinJE, LeeVH, KeipertS. Pilocarpine permeability across ocular tissues and cell cultures: influence of formulation parameters. J. Ocul. Pharmacol. Ther.18(5), 455–468 (2002).
  • Lee VH , YamamotoA, KompellaUB. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Syst.8(2), 91–192 (1991).
  • Eljarrat-Binstock E , DombAJ. Iontophoresis: a noninvasive ocular drug delivery. J. Control. Release110(3), 479–489 (2006).
  • Nurieva SM . [Effect on the eye vessels of vasodilator agents after their administration by different electrophoretic methods (clinical study)]. Vestn. Oftalmol.(2), 71–73 (1978).
  • Polunin GS , Kas‘ianovaNS. [Fluorophotometry in the clinical aspects of eye diseases]. Vestn. Oftalmol.(5), 52–57 (1979).
  • Bourne WM , BrubakerRF. Decreased endothelial permeability in the iridocorneal endothelial syndrome. Ophthalmology89(6), 591–595 (1982).
  • Maurice DM . Iontophoresis of fluorescein into the posterior segment of the rabbit eye. Ophthalmology93(1), 128–132 (1986).
  • Meyer DR , LinbergJV, VasquezRJ. Iontophoresis for eyelid anesthesia. Ophthalmic Surg21(12), 845–848 (1990).
  • Horwath-Winter J , SchmutO, Haller-SchoberEM, GruberA, RiegerG. Iodide iontophoresis as a treatment for dry eye syndrome. Br. J. Ophthalmol.89(1), 40–44 (2005).
  • Parkinson TM , FergusonE, FebbraroS, BakhtyariA, KingM, MundasadM. Tolerance of ocular iontophoresis in healthy volunteers. J. Ocul. Pharmacol. Ther.19(2), 145–151 (2003).
  • Amrite A , PugazhenthiV, CheruvuN, KompellaU. Delivery of celecoxib for treating diseases of the eye: influence of pigment and diabetes. Expert Opin. Drug Deliv.7(5), 631–645 (2010).
  • Prausnitz MR , NoonanJS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci.87(12), 1479–1488 (1998).
  • Kim TW , LindseyJD, AiharaM, AnthonyTL, WeinrebRN. Intraocular distribution of 70-kda dextran after subconjunctival injection in mice. Invest. Ophthalmol. Vis. Sci.43(6), 1809–1816 (2002).
  • Cheruvu NP , KompellaUB. Bovine and porcine trans-scleral solute transport: influence of lipophilicity and the choroid-bruch‘s layer. Invest. Ophthalmol. Vis. Sci.47(10), 4513–4522 (2006).
  • Kadam RS , KompellaUB. Influence of lipophilicity on drug partitioning into sclera, choroid-retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J. Pharmacol. Exp. Ther.332(3), 1107–1120 (2010).
  • Durairaj C , ShahJC, SenapatiS, KompellaUB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharm. Res.26(5), 1236–1260 (2009).
  • Durairaj C , KimSJ, EdelhauserHF, ShahJC, KompellaUB. Influence of dosage form on the intravitreal pharmacokinetics of diclofenac. Invest. Ophthalmol. Vis. Sci.50(10), 4887–4897 (2009).
  • Danis RP , CiullaTA, PrattLM, AnlikerW. Intravitreal triamcinolone acetonide in exudative age-related macular degeneration. Retina20(3), 244–250 (2000).
  • Jonas JB , KreissigI, SofkerA, DegenringRF. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch. Ophthalmol.121(1), 57–61 (2003).
  • Jonas JB . Intravitreal triamcinolone acetonide: a change in a paradigm. Ophthalmic Res.38(4), 218–245 (2006).
  • Mason JO 3rd, Somaiya MD, Singh RJ. Intravitreal concentration and clearance of triamcinolone acetonide in nonvitrectomized human eyes. Retina24(6), 900–904 (2004).
  • Chin HS , ParkTS, MoonYS, OhJH. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina25(5), 556–560 (2005).
  • Choonara YE , PillayV, DanckwertsMP, CarmichaelTR, Du Toit LC. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J. Pharm. Sci.99(5), 2219–2239 (2009).
  • Short BG . Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol. Pathol.36(1), 49–62 (2008).
  • Bourges JL , BloquelC, ThomasAet al. Intraocular implants for extended drug delivery: therapeutic applications. Adv. Drug Deliv. Rev. 58(11), 1182–1202 (2006).
  • Ramchandran RS , FekratS, StinnettSS, JaffeGJ. Fluocinolone acetonide sustained drug delivery device for chronic central retinal vein occlusion: 12-month results. Am. J. Ophthalmol.146(2), 285–291 (2008).
  • Ayalasomayajula SP , AshtonP, KompellaUB. Fluocinolone inhibits vegf expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM). J. Ocul. Pharmacol. Ther.25(2), 97–103 (2009).
  • Del Amo EM , UrttiA. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today13(3–4), 135–143 (2008).
  • Kompella UB , LiX, ZhanG, LeeSS. Influence of intravitreal implant location on ocular disposition of fluocinolone acetonide. ARVO Annual Meeting 5971/A5594 (2009).
  • Novack GD . Ophthalmic drug delivery: development and regulatory considerations. Clin. Pharmacol. Ther.85(5), 539–543 (2009).
  • Rieke ER , AmaralJ, Patricia Becerra S, Lutz RJ. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J. Ocul. Pharmacol. Ther. (2010) (In Press).
  • Kim EY , GaoZG, ParkJS, LiH, HanK. RHEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery. Int. J. Pharm.233(1–2), 159–167 (2002).
  • Kompella UB , BandiN, AyalasomayajulaSP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest. Ophthalmol. Vis. Sci.44(3), 1192–1201 (2003).
  • Kang SJ , DurairajC, KompellaUB, O‘BrienJM, GrossniklausHE. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch. Ophthalmol.127(8), 1043–1047 (2009).
  • Chiang CH , TungSM, LuDW, YehMK. In vitro and in vivo evaluation of an ocular delivery system of 5-fluorouracil microspheres. J. Ocul. Pharmacol. Ther.17(6), 545–553 (2001).
  • Van Quill KR , DioguardiPK, TongCTet al. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology 112(6), 1151–1158 (2005).
  • Saishin Y , SilvaRL, SaishinYet al. Periocular injection of microspheres containing pkc412 inhibits choroidal neovascularization in a porcine model. Invest. Ophthalmol. Vis. Sci. 44(11), 4989–4993 (2003).
  • Sunkara G , KompellaUB. Membrane transport processes in the eye. In: Ophthalmic Drug Delivery Systems, Mitra AK (Ed.). Marcel Dekker Inc., NY, USA, 13–58 (2003).

Patent

  • Bowman LM, Roy S, Pens S. Topical treatment for prevention of ocular infections. WO019366 (2001).
  • Nakada K, Sugiyama A. Process for producing controlled drug-release contact lens, and controlled drug-release contact lens thereby produced. US6027745 (1998).
  • Rosenthal P, Jacobs D. Drug delivery systems with scleral lens. US0286338 (2008).
  • Borgia MJ, Chaouk H, Cui H, Laredo W, Li Z, Nathan A. Punctal plugs for the delivery of active agents. US0045911 (2008).
  • Rodstrom T, Smith L, Tian Y, Marsh D, Weiner A, Bakshi S. Punctal plugs and methods of delivering therapeutic agents. WO094989 (2008)
  • Chauhan A, Hens Z. Dry eye treatment by punctal plug. WO079559 (2009)

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.