219
Views
0
CrossRef citations to date
0
Altmetric
Review

Intracellular Delivery of RNA-based Therapeutics Using Aptamers

&
Pages 849-861 | Published online: 03 Dec 2010

Bibliography

  • Potti A , SchilskyRL, NevinsJR. Refocusing the war on cancer: the critical role of personalized treatment. Sci. Transl Med.2(28), 28cm13 (2010).
  • Hamburg MA , CollinsFS. The path to personalized medicine. N. Engl. J. Med.363(4), 301–304 (2010).
  • Castanotto D , RossiJJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature457(7228), 426–433 (2009).
  • Morris KV . RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides19(4), 299–306 (2009).
  • Akashi H , MatsumotoS, TairaK. Gene discovery by ribozyme and siRNA libraries. Nat. Rev. Mol. Cell Biol.6(5), 413–422 (2005).
  • Behlke MA . Chemical modification of siRNAs for in vivo use. Oligonucleotides18(4), 305–320 (2008).
  • Agrawal S , KandimallaER. Antisense and siRNA as agonists of Toll-like receptors. Nat. Biotech.22(12), 1533–1537 (2004).
  • Sioud M . Does the understanding of immune activation by RNA predict the design of safe siRNAs? Front. Biosci.13, 4379–4392 (2008).
  • Schwarze SR , HoA, Vocero-AkbaniA, DowdySF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science285(5433), 1569–1572 (1999).
  • Song E , ZhuP, Lee S-K et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotech.23(6), 709–717 (2005).
  • Kumar P , WuH, McBrideJLet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149), 39–43 (2007).
  • Morrissey DV , LockridgeJA, ShawLet al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotech. 23(8), 1002–1007 (2005).
  • Urban-Klein B , WerthS, AbuharbeidS, CzubaykoF, AignerA. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo.. Gene Ther.12(5), 461–466 (2004).
  • Zimmermann TS , LeeACH, AkincAet al. RNAi-mediated gene silencing in non-human primates. Nature 441(7089), 111–114 (2006).
  • Kim S -S, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol. Med.15(11), 491–500 (2009).
  • Chu TC , TwuKY, EllingtonAD, LevyM. Aptamer mediated siRNA delivery. Nucl. Acids Res.34(10), e73 (2006).
  • Peer D , ZhuP, CarmanCV, LiebermanJ, ShimaokaM. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl Acad. Sci. USA104(10), 4095–4100 (2007).
  • Guo S , TschammerN, MohammedS, GuoP. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther.16(9), 1097–1110 (2005).
  • McNamara JO II, Andrechek ER, Wang Y et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat. Biotechnol.24(8), 1005–1015 (2006).
  • Zhou J , LiH, LiS, ZaiaJ, RossiJJ. Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol. Ther.16(8), 1481–1489 (2008).
  • Dassie JP , Liu X-Y, Thomas GS et al. Systemic administration of optimized aptamer–siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotech.27(9), 839–846 (2009).
  • Zhou J , SwiderskiP, LiHet al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucl. Acids Res. 37(9), 3094–3109 (2009).
  • Pastor F , KoloniasD, GiangrandePH, GilboaE. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature465(7295), 227–230 (2010).
  • Zhou J , RossiJ. Aptamer-targeted cell-specific RNA interference. Silence1(1), 4 (2010).
  • Soutschek J , AkincA, BramlageBet al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014), 173–178 (2004).
  • Nishina K , UnnoT, UnoYet al. Efficient in vivo delivery of siRNA to the liver by conjugation of α-tocopherol. Mol. Ther. 16(4), 734–740 (2008).
  • Muratovska A , EcclesMR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett.558(1–3), 63–68 (2004).
  • Chiu YL , AliA, ChuCY, CaoH, RanaTM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol.11(8), 1165–1175 (2004).
  • Tuerk C , GoldL. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science249(4968), 505–510 (1990).
  • Ellington AD , SzostakJW. In vitro selection of RNA molecules that bind specific ligands. Nature346(6287), 818–822 (1990).
  • McNamara JO , KoloniasD, PastorFet al. Multivalent 4–1BB binding aptamers costimulate CD8+T cells and inhibit tumor growth in mice. J. Clin. Invest. 118(1), 376–386 (2008).
  • Burmeister PE , LewisSD, SilvaRFet al. Direct in vitro selection of a 2´-O-methyl aptamer to VEGF. Chem. Biol. 12(1), 25–33 (2005).
  • Rusconi CP , ScardinoE, LayzerJet al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419(6902), 90–94 (2002).
  • Lupold SE , HickeBJ, LinY, CoffeyDS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res.62(14), 4029–4033 (2002).
  • Ruckman J , GreenLS, BeesonJet al. 2´-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165): Inhibition of receptor binding and VEGF-induced vascular permeability through interacions requiring the exon 7-encoded domain. J. Biol. Chem. 273(32), 20556–20567 (1998).
  • Biesecker G , DihelL, EnneyK, BendeleRA. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology42(1–3), 219–230 (1999).
  • Healy JM , LewisSD, KurzMet al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21(12), 2234–2246 (2004).
  • Beielman L , KarpeiskyA, Matulic-AdamicJ, HaeberliP, SweedlerD, UsmanN. Synthesis of 2´-modified nucleotides and their incorporation into hammerhead ribozymes. Nucl. Acids Res.23(21), 4434–4442 (1995).
  • Adler A , ForsterN, HomannM, GoringerHU. Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer. Comb. Chem. High Throughput Screen.11(1), 16–23 (2008).
  • Floege J , OstendorfT, JanssenUet al. Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154(1), 169–179 (1999).
  • Keefe AD , PaiS, EllingtonA. Aptamers as therapeutics. Nat. Rev. Drug Discov.9(7), 537–550 (2010).
  • Keefe AD , CloadST. SELEX with modified nucleotides. Curr. Opin. Chem. Biol.12(4), 448–456 (2008).
  • Thiel KW , GiangrandePH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides19(3), 209–222 (2009).
  • Nimjee SM , RusconiCP, SullengerBA. Aptamers: an emerging class of therapeutics. Annu. Rev. Med.56, 555–583 (2005).
  • Khaled A , GuoS, LiF, GuoP. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett.5(9), 1797–1808 (2005).
  • Wullner U , NeefI, EllerA, KleinesM, TurMK, BarthS. Cell-specific induction of apoptosis by rationally designed bivalent aptamer–siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets8(7), 554–565 (2008).
  • Farokhzad OC , ChengJ, TeplyBAet al. Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103(16), 6315–6320 (2006).
  • Zhang L , Radovic-Moreno Aleksandar F, Alexis F et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem.2(9), 1268–1271 (2007).
  • Dhar S , GuFX, LangerR, FarokhzadOC, LippardSJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug–PLGA–PEG nanoparticles. Proc. Natl Acad. Sci. USA105(45), 17356–17361 (2008).
  • Chen CH , DellamaggioreKR, OuelletteCPet al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105(41), 15908–15913 (2008).
  • Hicke BJ , StephensAW, GouldTet al. Tumor targeting by an aptamer. J. Nucl. Med. 47(4), 668–678 (2006).
  • Borbas KE , FerreiraCSM, PerkinsA, BruceJI, MissailidisS. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug. Chem.18(4), 1205–1212 (2007).
  • Bates PJ , KahlonJB, ThomasSD, TrentJO, MillerDM. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J. Biol. Chem.274(37), 26369–26377 (1999).
  • Ferreira CSM , MatthewsCS, MissailidisS. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol.27(6), 289–301 (2006).
  • Cerchia L , DucongeF, PestourieCet al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 3(4), e123 (2005).
  • Pestourie C , CerchiaL, GombertKet al. Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16(4), 323–335 (2006).
  • Li N , LarsonT, NguyenHH, SokolovKV, EllingtonAD. Directed evolution of gold nanoparticle delivery to cells. Chem. Commun. (Camb)46(3), 392–394 (2010).
  • Chen CB , ChernisGA, HoangVQ, LandgrafR. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl Acad. Sci. USA100(16), 9226–9231 (2003).
  • Ohuchi SP , OhtsuT, NakamuraY. Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie88(7), 897–904 (2006).
  • Kraus E , JamesW, BarclayAN. Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol.160(11), 5209–5212 (1998).
  • Dey AK , KhatiM, TangM, WyattR, LeaSM, JamesW. An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction. J. Virol.79(21), 13806–13810 (2005).
  • Khati M , SchumanM, IbrahimJ, SattentauQ, GordonS, JamesW. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2‘F-RNA aptamers. J. Virol.77(23), 12692–12698 (2003).
  • Israeli RS , PowellCT, CorrJG, FairWR, HestonWDW. Expression of the prostate-specific membrane antigen. Cancer Res.54(7), 1807–1811 (1994).
  • Su SL , Huang I-P, Fair WR, Powell CT, Heston WDW. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res.55(7), 1441–1443 (1995).
  • Ni X , ZhangY, DeWeeseTL, LupoldSE. Prostate tumor radiosensitization through PSMA-aptamer-targeted siRNA knock-down of DNA repair pathways. Presented at: 13th Annual Meeting American Society of Gene & Cell Therapy. Washington, DC, USA, 19–22 May 2010.
  • Zhou J , NeffPC, LiuXet al. Systemic administration of dendrimer- and aptamer–siRNA conjugates efficiently suppresses HIV-1 infection. Presented at: 13th Annual Meeting American Society of Gene & Cell Therapy. Washington, DC, USA, 19–22 May 2010.
  • Dove A . An apt approach. Nat. Med.16(3), 258–260 (2010).
  • Dominska M , DykxhoornDM. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci.123(8), 1183–1189 (2010).
  • Shamah SM , HealyJM, CloadST. Complex target SELEX. Acc. Chem. Res.41(1), 130–138 (2008).
  • Caruthers M . Gene synthesis machines: DNA chemistry and its uses. Science230(4723), 281–285 (1985).
  • Thiel KW , ThielWH, LiuXet al. Delivery of chemo-sensitizing siRNAs to HER2-positive breast cancer cells using RNA aptamers. Presented at: 13th Annual Meeting American Society of Gene & Cell Therapy. Washington, DC, USA, 19–22 May 2010.
  • Chu TC , MarksJW III, Lavery LA et al. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res.66(12), 5989–5992 (2006).
  • Bagalkot V , FarokhzadOC, LangerR, JonS. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl.45(48), 8149–8152 (2006).
  • Cheng J , TeplyBA, SherifiIet al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007).
  • Farokhzad OC , JonS, KhademhosseiniA, Tran T-NT, LaVan DA, Langer R. Nanoparticle-Aptamer Bioconjugates. Cancer Research64(21), 7668–7672 (2004).
  • Gu F , ZhangL, TeplyBAet al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA 105(7), 2586–2591 (2008).
  • Jayaprakash S , WangX, HestonW, KozikowskiA. Design and synthesis of a PSMA inhibitor–doxorubicin conjugate for targeted prostate cancer therapy. ChemMedChem.1(3), 299–302 (2006).
  • Hicke BJ , MarionC, Chang Y-F et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol.Chem.276(52), 48644–48654 (2001).
  • Santulli-Marotto S , NairSK, RusconiC, SullengerB, GilboaE. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res.63(21), 7483–7489 (2003).
  • Dollins CM , NairS, BoczkowskiDet al. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15(7), 675–682 (2008).
  • Liu Y , Kuan C-T, Mi J et al. Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol. Chem.390(2), 137–144 (2008).
  • Rentmeister A , BillA, WahleT, WalterJ, FamulokM. RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of β-secretase BACE1 in vitro. RNA12(9), 1650–1660 (2006).
  • O‘Connell D , KoenigA, JenningsSet al. Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc. Natl Acad. Sci. USA 93(12), 5883–5887 (1996).
  • Lee HK , ChoiYS, ParkYA, JeongS. Modulation of oncogenic transcription and alternative splicing by β-catenin and an RNA aptamer in colon cancer cells. Cancer Res.66(21), 10560–10566 (2006).
  • Tanaka Y , AkagiK, NakamuraY, KozuT. RNA aptamers targeting the carboxyl terminus of KRAS oncoprotein generated by an improved SELEX with isothermal RNA amplification. Oligonucleotides17(1), 12–21 (2007).
  • Ulrich H , IppolitoJE, PaganOet al. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA95(24), 14051–14056 (1998).
  • Daniels DA , SohalAK, ReesS, GrisshammerR. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal. Biochem.305(2), 214–226 (2002).
  • Ulrich H , MagdesianMH, AlvesMJM, ColliW. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J. Biol.Chem.277(23), 20756–20762 (2002).
  • Mallikaratchy P , TangZ, KwameS, MengL, ShangguanD, TanW. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy µ chain in Burkitt‘s lymphoma cells. Mol. Cell Proteomics6(12), 2230–2238 (2007).
  • Jeon SH , KayhanB, Ben-YedidiaT, ArnonR. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J. Biol.Chem.279(46), 48410–48419 (2004).
  • Ferreira CSM , CheungMC, MissailidisS, BislandS, GariepyJ. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucl. Acids Res.37(3), 866–876 (2009).
  • Soundararajan S , ChenW, SpicerEK, Courtenay-LuckN, FernandesDJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res.68(7), 2358–2365 (2008).
  • Girvan AC , TengY, CassonLKet al. AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. 5(7), 1790–1799 (2006).
  • Cao Z , TongR, MishraAet al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed. Engl. 48(35), 6494–6498 (2009).
  • Shangguan D , CaoZC, LiY, TanW. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin. Chem.53(6), 1153–1155 (2007).
  • Xiao Z , ShangguanD, CaoZ, FangX, TanW. Cell-specific internalization study of an aptamer from whole cell selection. Chemistry14(6), 1769–1775 (2008).
  • Shangguan D , CaoZ, MengLet al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 7(5), 2133–2139 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.