233
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeted Drug Delivery Across the blood–brain Barrier Using Ultrasound Technique

Pages 819-848 | Published online: 03 Dec 2010

Bibliography

  • Pardridge WM . The blood–brain barrier: Bottleneck in brain drug development. NeuroRx2(1), 3–14 (2005).
  • Neugroschl J , SanoM. An update on treatment and prevention strategies for alzheimer‘s disease. Curr. Neurol. Neurosci. Rep.9(5), 368–376 (2009).
  • Schouten LJ , RuttenJ, HuveneersHA, TwijnstraA. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer94(10), 2698–2705 (2002).
  • Tosoni A , ErmaniM, BrandesAA. The pathogenesis and treatment of brain metastases: a comprehensive review. Crit. Rev. Oncol. Hematol.52(3), 199–215 (2004).
  • Deeken JF , LoscherW. The blood–brain barrier and cancer: transporters, treatment, and trojan horses. Clin. Cancer. Res.13(6), 1663–1674 (2007).
  • Abbott NJ , PatabendigeAA, DolmanDE, YusofSR, BegleyDJ. Structure and function of the blood–brain barrier. Neurobiol. Dis.37(1), 13–25 (2010).
  • Cecchelli R , BerezowskiV, LundquistSet al. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug. Discov. 6(8), 650–661 (2007).
  • Juillerat-Jeanneret L . The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles?. Drug Discov. Today13(23–24), 1099–1106 (2008).
  • Abbott NJ . Dynamics of cns barriers: Evolution, differentiation, and modulation. Cell. Mol. Neurobiol.25(1), 5–23 (2005).
  • Persidsky Y , RamirezSH, HaorahJ, KanmogneGD. Blood–brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol.1(3), 223–236 (2006).
  • Pardridge WM . Blood–brain barrier delivery. Drug Discov. Today12(1–2), 54–61 (2007).
  • Levin VA . Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem.23(6), 682–684 (1980).
  • Fung LK , ShinM, TylerB, BremH, SaltzmanWM. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm. Res.13(5), 671–682 (1996).
  • Gabizon A , ShmeedaH, BarenholzY. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet.42(5), 419–436 (2003).
  • Vogelbaum MA . Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J. Neurooncol.83(1), 97–109 (2007).
  • Bidros DS , LiuJK, VogelbaumMA. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol.6(1), 117–125 (2010).
  • Sampson JH , ArcherG, PedainCet al. Poor drug distribution as a possible explanation for the results of the precise trial. J. Neurosurg. 113(2), 301–309 (2009).
  • Kunwar S , ChangS, WestphalMet al. Phase III randomized trial of CED of IL13-PE38QQR vs gliadel wafers for recurrent glioblastoma. Neuro. Oncol. 12(8), 871–881 (2010).
  • Pardridge WM . Re-engineering biopharmaceuticals for delivery to brain with molecular trojan horses. Bioconjug. Chem.19(7), 1327–1338 (2008).
  • Greig NH , DalyEM, SweeneyDJ, RapoportSI. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother. Pharmacol.25(5), 320–325 (1990).
  • Jahnke K , KraemerDF, KnightKRet al. Intraarterial chemotherapy and osmotic blood–brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer 112(3), 581–588 (2008).
  • Doolittle ND , AbreyLE, BleyerWAet al. New frontiers in translational research in neuro-oncology and the blood–brain barrier: report of the tenth annual blood–brain barrier disruption consortium meeting. Clin. Cancer. Res. 11(2 Pt 1), 421–428 (2005).
  • Kroll RA , NeuweltEA. Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery42(5), 1083–1099 (1998).
  • Riina HA , FraserJF, FralinS, KnopmanJ, ScheffRJ, BoockvarJA. Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J. Exp. Ther. Oncol.8(2), 145–150 (2009).
  • Mitragotri S . Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug. Discov.4(3), 255–260 (2005).
  • Campbell P , PrausnitzMR. Future directions for therapeutic ultrasound. Ultrasound Med. Biol.33(4), 657 (2007).
  • Deng CX , XuQ, ApfelRE, HollandCK. In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound Med. Biol.22(7), 939–948 (1996).
  • Kennedy JE . High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer.5(4), 321–327 (2005).
  • Vaezy S , MartinR, CrumL. High intensity focused ultrasound: a method of hemostasis. Echocardiography18(4), 309–315 (2001).
  • Vaezy S , FujimotoVY, WalkerC, MartinRW, ChiEY, CrumLA. Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound. Am. J. Obstet. Gynecol.183(1), 6–11 (2000).
  • Wu J . Shear stress in cells generated by ultrasound. Prog. Biophys. Mol. Biol.93(1–3), 363–373 (2007).
  • Collis J , ManassehR, LiovicPet al. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50(2), 273–279
  • Vanbavel E . Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog. Biophys. Mol. Biol.93(1–3), 374–383 (2007).
  • Prentice P , CuschieriA, DholakiaK, PrausnitzM, CampbellP. Membrane disruption by optically controlled microbubble cavitation. Nature Physics1(2), 107–110 (2005).
  • Okada K , KudoN, NiwaK, YamamotoK. A basic study on sonoporation with microbubbles exposed to pulsed ultrasound. J. Med. Ultrasonics32, 3–11 (2005).
  • Hallow DM , MahajanAD, MccutchenTE, PrausnitzMR. Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med. Biol.32(7), 1111–1122 (2006).
  • Zhou Y , CuiJ, DengCX. Dynamics of sonoporation correlated with acoustic cavitation activities. Biophys. J.94(7), L51–L53 (2008).
  • Van Wamel A , KooimanK, HarteveldMet al. Vibrating microbubbles poking individual cells. Drug transfer into cells via sonoporation. J. Control. Release 112(2), 149–155 (2006).
  • Forbes MM , SteinbergRL, O‘brienWD Jr. Examination of intertial cavitation of optison in producing sonoporation of chinese hamster ovary cells. Ultrasound Med. Biol.34, 2009–2018 (2008).
  • Deng CX , LizziFL. A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications. Ultrasound Med. Biol.28(3), 277–286 (2002).
  • Qin S , CaskeyCF, FerraraKW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol.54(6), R27–57 (2009).
  • Lindner JR . Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug. Discov.3(6), 527–532 (2004).
  • Ohl CD , AroraM, IkinkRet al. Sonoporation from jetting cavitation bubbles. Biophys. J. 91(11), 4285–4295 (2006).
  • Ferrara K , PollardR, BordenM. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng.9, 415–447 (2007).
  • Ferrara KW . Driving delivery vehicles with ultrasound. Adv. Drug. Deliv. Rev.60(10), 1097–1102 (2008).
  • Price RJ , SkybaDM, KaulS, SkalakTC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation98(13), 1264–1267 (1998).
  • Postema M , Van Wamel A, Lancee CT, De Jong N. Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med. Biol.30(6), 827–840 (2004).
  • Rosenthal I , SostaricJZ, RieszP. Sonodynamic therapy – a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem.11(6), 349–363 (2004).
  • Juffermans LJ , DijkmansPA, MustersRJ, VisserCA, KampO. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol.291(4), H1595–H1601 (2006).
  • Okada K , KudoN, KondoT, YamamotoK. Contributions of mechanical and sonochemical effects to cell membrane damage induced by single-shot pulsed ultrasound with adjacent microbubbles. J. Med. Ultrason.35(4), 169–176 (2008).
  • Deng CX , XuQ, ApfelRE, HollandCK. Inertial cavitation produced by pulsed ultrasound in controlled host media. J. Acoust. Soc. Am.100(2 Pt 1), 1199–1208 (1996).
  • Apfel RE , HollandCK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol.17(2), 179–185 (1991).
  • Holland CK , ApfelRE. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J. Acoust. Soc. Am.88(5), 2059–2069 (1990).
  • Kaufmann BA , LindnerJR. Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol.18(1), 11–16 (2007).
  • Hernot S , KlibanovAL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev.60(10), 1153–1166 (2008).
  • Zuber-Jerger I , SchachererD, WoenckhausM, JungEM, ScholmerichJ, KleblF. Contrast-enhanced ultrasound in diagnosing liver malignancy. Clin. Hemorheol. Microcirc.43(1), 109–118 (2009).
  • Powers J , AverkiouM, BruceM. Principles of cerebral ultrasound contrast imaging. Cerebrovasc. Dis.27(Suppl. 2), 14–24 (2009).
  • Phillips LC , KlibanovAL, BowlesDK, RagostaM, HossackJA, WamhoffBR. Focused in vivo delivery of plasmid DNA to the porcine vascular wall via intravascular ultrasound destruction of microbubbles. J. Vasc. Res.47(3), 270–274 (2010).
  • Otani K , YamaharaK, OhnishiS, ObataH, KitamuraS, NagayaN. Nonviral delivery of sirna into mesenchymal stem cells by a combination of ultrasound and microbubbles. J. Control. Release133(2), 146–153 (2009).
  • Li YS , DavidsonE, ReidCN, MchaleAP. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer. Cancer Lett.273(1), 62–69 (2009).
  • Vandenbroucke RE , LentackerI, DemeesterJ, De Smedt SC, Sanders NN. Ultrasound assisted sirna delivery using peg-siplex loaded microbubbles. J. Control. Release126(3), 265–273 (2008).
  • Zarnitsyn VG , KamaevPP, PrausnitzMR. Ultrasound-enhanced chemotherapy and gene delivery for glioma cells. Technol. Cancer Res. Treat.6(5), 433–442 (2007).
  • Deng CX . Sonoporation and gene delivery. In: Therapeutic Ultrasound: Mechanisms to Applications. Frenkel V (Ed.). Nova Science Publishers, NY, USA (2010).
  • Mayer CR , GeisNA, KatusHA, BekeredjianR. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin. Drug Deliv.5(10), 1121–1138 (2008).
  • Hynynen K . Ultrasound for drug and gene delivery to the brain. Adv. Drug. Deliv. Rev.60(10), 1209–1217 (2008).
  • Hynynen K . Macromolecular delivery across the blood–brain barrier. Methods Mol. Biol.480, 175–185 (2009).
  • Vykhodtseva N , McdannoldN, HynynenK. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics48(4), 279–296 (2008).
  • Ballantine HT Jr, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J. Neurosurg.17, 858–876 (1960).
  • Patrick JT , NoltingMN, GossSAet al. Ultrasound and the blood–brain barrier. Adv. Exp. Med. Biol. 267, 369–381 (1990).
  • Vykhodtseva NI , HynynenK, DamianouC. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med. Biol.21(7), 969–979 (1995).
  • Sheikov N , McdannoldN, JoleszF, ZhangYZ, TamK, HynynenK. Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound Med. Biol.32(9), 1399–1409 (2006).
  • Hynynen K , McdannoldN, VykhodtsevaN, JoleszFA. Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology220(3), 640–646 (2001).
  • Hynynen K , McdannoldN, SheikovNA, JoleszFA, VykhodtsevaN. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage24(1), 12–20 (2005).
  • Kinoshita M , McdannoldN, JoleszFA, HynynenK. Noninvasive localized delivery of herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc. Natl Acad. Sci. USA103(31), 11719–11723 (2006).
  • Kinoshita M , McdannoldN, JoleszFA, HynynenK. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem. Biophys. Res. Commun.340(4), 1085–1090 (2006).
  • Mesiwala AH , FarrellL, WenzelHJet al. High-intensity focused ultrasound selectively disrupts the blood–brain barrier in vivo. Ultrasound Med. Biol. 28(3), 389–400 (2002).
  • Choi JJ , PernotM, BrownTR, SmallSA, KonofagouEE. Spatio-temporal analysis of molecular delivery through the blood–brain barrier using focused ultrasound. Phys. Med. Biol.52(18), 5509–5530 (2007).
  • Ng KY , LiuY. Therapeutic ultrasound: its application in drug delivery. Med. Res. Rev.22(2), 204–223 (2002).
  • Mcdannold N , VykhodtsevaN, HynynenK. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys. Med. Biol.51(4), 793–807 (2006).
  • Mcdannold N , VykhodtsevaN, HynynenK. Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood–brain barrier disruption. Ultrasound Med. Biol.34(6), 930–937 (2008).
  • Hynynen K , McdannoldN, MartinH, JoleszFA, VykhodtsevaN. The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (optison). Ultrasound Med. Biol.29(3), 473–481 (2003).
  • Sheikov N , McdannoldN, VykhodtsevaN, JoleszF, HynynenK. Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med. Biol.30(7), 979–989 (2004).
  • Mcdannold N , VykhodtsevaN, JoleszFA, HynynenK. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn. Reson. Med.51(5), 913–923 (2004).
  • Mcdannold N , VykhodtsevaN, RaymondS, JoleszFA, HynynenK. MRI-guided targeted blood–brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med. Biol.31(11), 1527–1537 (2005).
  • Hynynen K , McdannoldN, VykhodtsevaNet al. Focal disruption of the blood–brain barrier due to 260-khz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J. Neurosurg. 105(3), 445–454 (2006).
  • Choi JJ , PernotM, SmallSA, KonofagouEE. Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med. Biol.33(1), 95–104 (2007).
  • Treat LH , McdannoldN, VykhodtsevaN, ZhangY, TamK, HynynenK. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int. J. Cancer121(4), 901–907 (2007).
  • Choi JJ , WangS, TungYS, MorrisonB, 3rd, Konofagou EE. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood–brain barrier opening in vivo. Ultrasound Med. Biol.36(1), 58–67 (2010).
  • Mcdannold N , ClementGT, BlackP, JoleszF, HynynenK. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery66(2), 323–332 (2010).
  • Hynynen K . MRI-guided focused ultrasound treatments. Ultrasonics50(2), 221–229 (2010).
  • Fry FJ , BargerJE. Acoustical properties of the human skull. J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
  • Marquet F , PernotM, AubryJFet al. Non-invasive transcranial ultrasound therapy based on a 3D ct scan: Protocol validation and in vitro results. Phys. Med. Biol. 54(9), 2597–2613 (2009).
  • White PJ , ClementGT, HynynenK. Local frequency dependence in transcranial ultrasound transmission. Phys. Med. Biol.51(9), 2293–2305 (2006).
  • Hynynen K , SunJ. Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control46(3), 752–755 (1999).
  • White J , ClementGT, HynynenK. Transcranial ultrasound focus reconstruction with phase and amplitude correction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(9), 1518–1522 (2005).
  • Clement GT , HynynenK. Correlation of ultrasound phase with physical skull properties. Ultrasound Med. Biol.28(5), 617–624 (2002).
  • Hynynen K , ClementGT, McdannoldNet al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 52(1), 100–107 (2004).
  • Jordao JF , Ayala-GrossoCA, MarkhamKet al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the tgcrnd8 mouse model of alzheimer‘s disease. PLoS One 5(5), e10549 (2010).
  • Baselga J . Current and planned clinical trials with trastuzumab (herceptin). Semin. Oncol.27(5 Suppl. 9), 27–32 (2000).
  • Jemal A , SiegelR, WardE, HaoY, XuJ, ThunMJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Grossman SA , BataraJF. Current management of glioblastoma multiforme. Semin. Oncol.31(5), 635–644 (2004).
  • Grossman SA , O‘neillA, GrunnetMet al. Phase III study comparing three cycles of infusional carmustine and cisplatin followed by radiation therapy with radiation therapy and concurrent carmustine in patients with newly diagnosed supratentorial glioblastoma multiforme: Eastern Cooperative Oncology Group trial 2394. J. Clin. Oncol. 21(8), 1485–1491 (2003).
  • Liu HL , HuaMY, ChenPYet al. Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255(2), 415–425 (2010).
  • Xie F , BoskaMD, LofJ, UbertiMG, TsutsuiJM, PorterTR. Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med. Biol.34(12), 2028–2034 (2008).
  • Sassaroli E , HynynenK. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound Med. Biol.33(10), 1651–1660 (2007).
  • Sassaroli E , HynynenK. Forced linear oscillations of microbubbles in blood capillaries. J. Acoust. Soc. Am.115(6), 3235–3243 (2004).
  • Qin S , FerraraKW. Acoustic response of compliable microvessels containing ultrasound contrast agents. Phys. Med. Biol.51(20), 5065–5088 (2006).
  • Goertz DE , WrightC, HynynenK. Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. Ultrasound Med. Biol.36(6), 916–924 (2010).
  • Chopra R , VykhodtsevaN, HynynenK. Influence of exposure time and pressure amplitude on blood–brain-barrier opening using transcranial ultrasound exposures. ACS Chem. Neurosci.1(5), 391–398 (2010).
  • Mcdannold N , VykhodtsevaN, HynynenK. Blood–brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound. Med. Biol.34(5), 834–840 (2008).
  • Choi JJ , FeshitanJA, BaseriBet al. Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo. IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
  • Tu J , HwangJH, MatulaTJ, BraymanAA, CrumLA. Intravascular inertial cavitation activity detection and quantification in vivo with optison. Ultrasound Med. Biol.32(10), 1601–1609 (2006).
  • Zhou Y , ShiJ, CuiJ, DengCX. Effects of extracellular calcium on cell membrane resealing in sonoporation. J. Control. Release126(1), 34–43 (2008).
  • Tung YS , ChoiJJ, BaseriB, KonofagouEE. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. Ultrasound Med. Biol.36(5), 840–852 (2010).
  • Kumon RE , AehleM, SabensDet al. Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med. Biol. 35(3), 494–506 (2009).
  • Kumon RE , AehleM, SabensD, ParikhP, KourennyiD, DengCX. Ultrasound-induced calcium oscillations and waves in chinese hamster ovary cells in the presence of microbubbles. Biophys. J.93(6), L29–L31 (2007).
  • Fan Z , KumonRE, ParkJ, DengCX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J. Control. Release.142(1), 31–39 (2010).
  • Gumbiner BM . Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell84(3), 345–357 (1996).
  • Nigam SK , Rodriguez-BoulanE, SilverRB. Changes in intracellular calcium during the development of epithelial polarity and junctions. Proc. Natl Acad. Sci. USA89(13), 6162–6166 (1992).
  • Shasby DM , ShasbySS. Effects of calcium on transendothelial albumin transfer and electrical resistance. J. Appl. Physiol.60(1), 71–79 (1986).
  • Stuart RO , SunA, PanichasM, HebertSC, BrennerBM, NigamSK. Critical role for intracellular calcium in tight junction biogenesis. J. Cell. Physiol.159(3), 423–433 (1994).
  • Stuart RO , SunA, BushKT, NigamSK. Dependence of epithelial intercellular junction biogenesis on thapsigargin-sensitive intracellular calcium stores. J. Biol. Chem.271(23), 13636–13641 (1996).
  • Abbott NJ . Role of intracellular calcium in regulation of brain endothelial permeability. In: Introduction to the Blood–Brain Barrier: Methodology, Biology and Pathology. Pardridge WM (Ed.). Cambridge University Press, NY, USA 345–351 (1998).
  • Brown RC , DavisTP. Calcium modulation of adherens and tight junction function: a potential mechanism for blood–brain barrier disruption after stroke. Stroke33(6), 1706–1711 (2002).
  • Revest PA , AbbottNJ, GillespieJI. Receptor-mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells. Brain. Res.549(1), 159–161 (1991).
  • Park J , FanZ, KumonRE, El-SayedME, DengCX. Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med. Biol.36(7), 1176–1187 (2010).
  • Paemeleire K , De Hemptinne A, Leybaert L. Chemically, mechanically, and hyperosmolarity-induced calcium responses of rat cortical capillary endothelial cells in culture. Exp. Brain Res.126(4), 473–481 (1999).
  • Abbott NJ . Inflammatory mediators and modulation of blood–brain barrier permeability. Cell. Mol. Neurobiol.20(2), 131–147 (2000).
  • Sheikov N , McdannoldN, SharmaS, HynynenK. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med. Biol.34(7), 1093–1104 (2008).
  • Raymond SB , TreatLH, DeweyJD, McdannoldNJ, HynynenK, BacskaiBJ. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer‘s disease mouse models. PLoS One3(5), e2175 (2008).
  • Pernot M , AubryJF, TanterMet al. In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J. Neurosurg.106(6), 1061–1066 (2007).
  • Gateau J , MarsacL, PernotM, AubryJF, TanterM, FinkM. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans. Biomed. Eng.57(1), 134–144 (2010).
  • Chopra R , CurielL, StaruchR, MorrisonL, HynynenK. An MRI-compatible system for focused ultrasound experiments in small animal models. Med. Phys.36(5), 1867–1874 (2009).
  • Liu HL , WaiYY, ChenWSet al. Hemorrhage detection during focused-ultrasound induced blood–brain-barrier opening by using susceptibility-weighted magnetic resonance imaging. Ultrasound Med. Biol. 34(4), 598–606 (2008).
  • Liu HL , HsuPH, ChuPCet al. Magnetic resonance imaging enhanced by superparamagnetic iron oxide particles: usefulness for distinguishing between focused ultrasound-induced blood–brain barrier disruption and brain hemorrhage. J. Magn. Reson. Imaging 29(1), 31–38 (2009).
  • Lin KJ , LiuHL, HsuPHet al. Quantitative micro-spect/ct for detecting focused ultrasound-induced blood–brain barrier opening in the rat. Nucl. Med. Biol. 36(7), 853–861 (2009).
  • Kaufmann BA , WeiK, LindnerJR. Contrast echocardiography. Curr. Probl. Cardiol.32(2), 51–96 (2007).
  • O‘Brien WD Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol.93(1–3), 212–255 (2007).
  • Dayton PA , AllenJS, FerraraKW. The magnitude of radiation force on ultrasound contrast agents. J. Acoust. Soc. Am.112(5 Pt 1), 2183–2192 (2002).
  • Blomley MJ , CookeJC, UngerEC, MonaghanMJ, CosgroveDO. Microbubble contrast agents: a new era in ultrasound. BMJ322(7296), 1222–1225 (2001).
  • Borden MA , ZhangH, GilliesRJ, DaytonPA, FerraraKW. A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials29(5), 597–606 (2008).
  • Koo YE , ReddyGR, BhojaniMet al. Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug. Deliv. Rev. 58(14), 1556–1577 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.