697
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Perfectly Shaped siRNA Delivery

, , &
Pages 737-742 | Published online: 03 Dec 2010

Bibliography

  • Boas U , HeegaardPM. Dendrimers in drug research. Chem. Soc. Rev.33(1), 43–63 (2004).
  • Frechet JMJ , TomaliaDA. Dendrimers and Other Dendritic Polymers. John Wiley & Sons, Chichester, UK (2001).
  • Wang J , LuZ, WientjesMG, AuJL. Delivery of sirna therapeutics: barriers and carriers. AAPS J. DOI: 10.1208/s12248-010-9210-4 (2010) (Epub ahead of print).
  • D‘emanuele A , AttwoodD. Dendrimer–drug interactions. Adv. Drug Deliv. Rev.57(15), 2147–2162 (2005).
  • Shcharbin DG , KlajnertB, BryszewskaM. Dendrimers in gene transfection. Biochemistry (Mosc.)74(10), 1070–1079 (2009).
  • Zamore PD , HaleyB. Ribo-gnome: the big world of small rnas. Science309(5740), 1519–1524 (2005).
  • Mok H , LeeSH, ParkJW, ParkTG. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat. Mater.9(3), 272–278 (2010).
  • Manoharan M . RNA interference and chemically modified small interfering rnas. Curr. Opin. Chem. Biol.8(6), 570–579 (2004).
  • Merkel OM Mintzer MA, Librizzi D et al. Triazine dendrimers as nonviral vectors for in vitro and in vivo rnai: the effects of peripheral groups and core structure on biological activity. Mol. Pharm.7(4), 969–983 (2010).
  • Pavan GM , MintzerMA, SimanekEE, Merkel Om, Kissel T, Danani A. Computational insights into the interactions between DNA and sirna with ‘rigid‘ and ‘flexible‘ triazine dendrimers. Biomacromolecules11(3), 721–730 (2010).
  • Spagnou S , MillerAD, KellerM. Lipidic carriers of sirna: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry43(42), 13348–13356 (2004).
  • Shen XC , ZhouJ, LiuXet al. Importance of size-to-charge ratio in construction of stable and uniform nanoscale rna/dendrimer complexes. Org. Biomol. Chem. 5(22), 3674–3681 (2007).
  • Juliano RL . Intracellular delivery of oligonucleotide conjugates and dendrimer complexes. Ann. NY Acad. Sci.1082, 18–26 (2006).
  • Inoue Y , KuriharaR, TsuchidaAet al. Efficient delivery of sirna using dendritic poly(L-lysine) for loss-of-function analysis. J. Control. Release. 126(1), 59–66 (2008).
  • Zhou J , WuJ, HafdiN, BehrJP, ErbacherP, PengL. Pamam dendrimers for efficient sirna delivery and potent gene silencing. Chem. Commun. (Camb.)22, 2362–2364 (2006).
  • Perez AP , RomeroEL, MorillaMJ. Ethylendiamine core pamam dendrimers/sirna complexes as in vitro silencing agents. Int. J. Pharm.380(1–2), 189–200 (2009).
  • Liu XX , RocchiP, QuFQet al. PAMAM dendrimers mediate sirna delivery to target hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem. 4(8), 1302–1310 (2009).
  • Yuan Q , LeeE, YeudallWA, YangH. Dendrimer–triglycine–EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol.46(9), 698–704 (2010).
  • Watanabe K , Harada-ShibaM, SuzukiAet al. In vivo sirna delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. Mol. Biosyst.5(11), 1306–1310 (2009).
  • Tsutsumi T , ArimaH, HirayamaF, UekamaK. Potential use of dendrimer/α-cyclodextrin conjugate as a novel carrier for small interfering rna (sirna). J. Incl. Phenom. Macrocycl. Chem.56(1), 81–84 (2006).
  • Tsutsumi T , HirayamaF, UekamaK, ArimaH. Potential use of polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) as a novel carrier for short hairpin RNA-expressing plasmid DNA. J. Pharm. Sci.97(8), 3022–3034 (2008).
  • Kim ID , LimCM, KimJBet al. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 sirna delivery in primary cortical cultures and in the postischemic brain. J. Control Release 142(3), 422–430 (2010).
  • Tsutsumi T , HirayamaF, UekamaK, ArimaH. Evaluation of polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering rna (sirna). J. Control. Release119(3), 349–359 (2007).
  • Waite C l, Roth Cm. PAMAM–RGD conjugates enhance sirna delivery through a multicellular spheroid model of malignant glioma. Bioconjug. Chem.20(10), 1908–1916 (2009).
  • Agrawal A , MinDH, SinghNet al. Functional delivery of sirna in mice using dendriworms. ACS Nano 3(9), 2495–2504 (2009).
  • Jevprasesphant R , PennyJ, JalalR, AttwoodD, MckeownNB, D‘emanueleA. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm.252(1–2), 263–266 (2003).
  • Svenson S . Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm.71(3), 445–462 (2009).
  • Waite CL , SparksSM, UhrichKE, RothCM. Acetylation of pamam dendrimers for cellular delivery of sirna. BMC Biotechnol. DOI: 10.1186/1472-6750-9-38 (2009) (Epub ahead of print).
  • Patil ML , ZhangM, BetigeriS, TaratulaO, HeH, MinkoT. Surface-modified and internally cationic polyamidoamine dendrimers for efficient sirna delivery. Bioconjug. Chem.19(7), 1396–1403 (2008).
  • Patil M l, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine PAMAM-OH dendrimers for sirna delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules10(2), 258–266 (2009).
  • Dutta T , BurgessM, McmillanNAJ, ParekhHS. Dendrosome-based delivery of sirna against e6 and e7 oncogenes in cervical cancer. Nanomedicine6, 463–470 (2010).
  • Kang H , DelongR, FisherMH, JulianoRL. Tat-conjugated pamam dendrimers as delivery agents for antisense and sirna oligonucleotides. Pharm. Res.22(12), 2099–2106 (2005).
  • Elsabahy M , WazenN, Bayó-PuxanNet al. Delivery of nucleic acids through the controlled disassembly of multifunctional nanocomplexes. Adv. Funct. Mater. 19, 3862–3867 (2009).
  • Taratula O , GarbuzenkoOB, KirkpatrickPet al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral sirna delivery. J. Control. Release 140(3), 284–293 (2009).
  • Taratula O , SavlaR, PandyaI, WangA, MinkoT, HeH. Novel superparamagnetic iron oxide nanoparticles for a multifunctional nanomedicine platform. Materials Research Society Symposium Proceedings. Warrendale, PA, USA (2009).
  • Chen AM , TaratulaO, WeiDet al. Labile catalytic packaging of DNA/sirna: control of gold nanoparticles ‘out‘ of DNA/sirna complexes. ACS Nano 4(7), 3679–3688 (2010).
  • Ohsaki M , OkudaT, WadaA, HirayamaT, NiidomeT, AoyagiH. In vitro gene transfection using dendritic poly(L-lysine). Bioconjug. Chem.13(3), 510–517 (2002).
  • Kaneshiro TL , LuZR. Targetedintracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials30(29), 5660–5666 (2009).
  • McCarroll J , BaigudeH, YangCS, RanaTM. Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic rnai. Bioconjug. Chem.21(1), 56–63 (2010).
  • Bermejo J , OrtegaP, ChoncoLet al. Water-soluble carbosilane dendrimers: eynthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry 13, 483–495 (2007).
  • Weber N , OrtegaP, Clemente Mi et al. Characterization of carbosilane dendrimers as effective carriers of sirna to HIV-infected lymphocytes. J. Control. Release132(1), 55–64 (2008).
  • Gonzalo T , ClementeMI, ChoncoLet al. Gene therapy in HIV-infected cells to decrease viral impact by using an alternative delivery method. ChemMedChem. 5(6), 921–929 (2010).
  • Posadas I , Lopez-HernandezB, ClementeMIet al. Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for HIF-1α in early chemical hypoxia-mediated neurotoxicity. Pharm. Res. 26(5), 1181–1191 (2009).
  • Merkel OM , MintzerMA, SitterbergJ, BakowskyU, SimanekEE, KisselT. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug. Chem.20(9), 1799–1806 (2009).
  • Mintzer MA , MerkelOM, KisselT, SimanekEE. Polycationic triazine-based dendrimers: effect of peripheral groups on transfection efficiency. New J. Chem.33, 1918–1925 (2009).
  • Gras R , AlmonacidL, OrtegaPet al. Changes in gene expression pattern of human primary macrophages induced by carbosilane dendrimer 2g-nn16. Pharm. Res. 26(3), 577–586 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.