121
Views
0
CrossRef citations to date
0
Altmetric
Review

Polymer Nanoassemblies for Cancer Treatment and Imaging

, &
Pages 803-817 | Published online: 03 Dec 2010

Bibliography

  • Stiriba S -E, Kautz H, Frey H. Hyperbranched molecular nanocapsules: comparison of the hyperbranched architecture with the perfect linear analogue. J. Am. Chem. Soc.124, 9698–9699 (2002).
  • Naira LS , LaurencinCT. Biodegradable polymers as biomaterials. Prog. Polym. Sci.32, 762–798 (2007).
  • Gaucher G , MarchessaultRH, Leroux J-C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J. Control. Release143, 2–12 (2010).
  • Deming TJ . Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug-delivery. Adv. Drug Del. Rev.54, 1145–1155 (2002).
  • Zhang L , EisenbergA. Multiple morphologies of ‘crew-cut‘ aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science268, 1728–1731 (1995).
  • Putnam D , KopečekJ. Polymer conjugates with anticancer activity. Adv. Polym. Sci.122, 55–123 (1995).
  • Webber SE , MunkP, TuzarZ. Solvents and self-organization of polymers. Kluwer Academic Pub.327, 383–407 (1996).
  • Van Dongen SFM , De Hoog HPM, Peters RJRW, Nallani M, Nolte RJM, Van Hest JCM. Biohybrid polymer capsules. Chem. Rev.109, 6212–6274 (2009).
  • Meyer EE , RosenbergKJ, IsraelachviliJ. Recent progress in understanding hydrophobic interactions. Proc. Natl Acad. Sci. USA103, 15739–15746 (2006).
  • Lim YB , MoonKS, LeeM. Rod–coil block molecules: their aqueous self-assembly and biomaterials applications. J. Mater. Chem.18, 2909–2918 (2008).
  • Israelachvili JN . Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (2nd Edition). Academic Press, CA, USA (1992).
  • Smart T , HomasH, MassignaniM, Flores-MerinoMV, PerezLR, BattagliaG. Block copolymer nanostructures. Nanotoday3, 38–46 (2008).
  • Cai C , LinJ, ChenT, TianX. Aggregation behavior of graft copolymer with rigid backbone. Langmuir26, 2791–2797 (2010).
  • Won Y -Y, Brannan AK, Davis HT, Bates FS. Cryogenic transmission electron microscopy (Cryo-TEM) of micelles and vesicles formed in water by poly(ethylene oxide)-based block copolymers. J. Phys. Chem. B106, 3354–3364 (2002).
  • Ahmed F , DischerDE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J. Control. Release96, 37–53 (2004).
  • Cheng H , YuanX, SunX, LiK, ZhouY, YanD. Effect of degree of branching on the self-assembly of amphiphilic hyperbranched multiarm copolymers. Macromolecules43, 1143–1147 (2010).
  • Zhang L , LinJ, LinS. Aggregate morphologies of amphiphilic graft copolymers in dilute solution studied by self-consistent field theory. J. Phys. Chem. B111, 9209–9217 (2007).
  • Qi H , ZhongC. Density functional theory studies on the microphase separation of amphiphilic comb copolymers in a selective solvent. J. Phys. Chem. B112, 10841–10847 (2008).
  • Chandler D . Interfaces and the driving force of hydrophobic assembly. Nature437, 640–647 (2005).
  • Antonietti M , FörsterS. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater.15, 1323–1333 (2003).
  • Zhang L , YuK, EisenbergA. Ion-induced morphological changes in ‘crew-cut‘ aggregates of amphiphilic block copolymers. Science272, 1777–1179 (1996).
  • Allen C , MaysingerD, EisenbergA. Nano-engineering block copolymer aggregates for drug-delivery. Colloids Surf. B Biointerfaces16, 3–27 (1999).
  • Kim D -W, Kim S-Y, Kim H-K et al. Multicenter Phase II trial of Genexol-PM, a novel Cremophor®-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol.18, 2009–2014 (2007).
  • Bae Y , KataokaK. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Delivery Rev.61, 768–784 (2009).
  • Matsumura Y . Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Del. Rev.60, 899–914 (2008).
  • Kataoka K , KwonGS, YokoyamaM, OkanoT, SakuraiY. Block copolymer micelles as vehicles for drug-delivery. J. Control. Release24, 119–132 (1993).
  • Kim JO , KabanovAV, TatianaBK. Polymer micelles with crosslinked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release138, 197–204 (2009).
  • Bae Y , FukushimaS, HaradaA, KataokaK. Design of environment-sensitive supramolecular assemblies for intracellular drug-delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed.42, 4640–4643 (2003).
  • Christie RJ , GraingerDW. Design strategies to improve soluble macromolecular delivery constructs. Adv. Drug Delivery Rev.55, 421–437 (2003).
  • Jang K -S, Lee HJ, Yang H-M et al. Aqueous self-assembly of amphiphilic nanocrystallo-polymers and their surface-active properties. Soft Matter4, 349–356 (2008).
  • Saravanakumar G , MinKH, MinDSet al. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J. Control. Release 140, 210–217 (2009).
  • Tomida M , NakatoT, MatsunamiS, KakuchiT. Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of L-aspartic acid. Polymer38, 4733–4736 (1997).
  • Kang HS , YangSR, Kim J-D, Han S-H, Chang I-S. Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid). Langmuir17, 7501–7506 (2001).
  • Yang SR , JeongJH, ParkK, Kim J-D. Self-aggregates of hydrophobically modified poly(2-hydroxyethyl aspartamide) in aqueous solution. Colloid Polym. Sci.281, 852–861 (2003).
  • Jeong JH , KangHS, YangSR, Kim J-D. Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer44, 583–591 (2003).
  • Lee HJ , YangSR, AnEJ, Kim J-D. Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution. Macromolecules39, 4938–4941 (2006).
  • Kang HS , Kim J-D, Han S-H, Chang I-S. Self-aggregates of poly(2-hydroxyethyl aspartamide) copolymers loaded with methotrexate by physical and chemical entrapments. J. Control. Release81, 135–144 (2002).
  • Yang SR , LeeHJ, Kim J-D. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J. Control. Release114, 60–68 (2006).
  • Yang SR , KimSB, JoeCO, Kim J-D. Intracellular delivery enhancement of poly(amino acid) drug carriers by oligoarginine conjugation. J. Biomed. Mater. Res. A86, 137–148 (2007).
  • Discher BM , Won Y-Y, Ege DS et al. Polymersomes: tough vesicles made from diblock copolymers. Science284, 1143–1146 (1999).
  • Discher DE , EisenbergA. Polymer vesicles. Science297, 967–973 (2002).
  • LoPresti C , LomasH, MassignaniM, SmartT, BattagliaG. Polymersomes: nature inspired nanometer sized compartments. J. Mater. Chem.19, 3576–3590 (2009).
  • Ben-Haim N , BrozP, MarschS, MeierW, HunzikerP. Cell-specific integration of artificial organelles based on functionalized polymer vesicles. Nano Lett.8, 1368–1373 (2008).
  • Bermudez H , BrannanAK, HammerDA, BatesFS, DischerDE. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules35, 8203–8208 (2002).
  • Battaglia G , RyanAJ. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc.127, 8757–8764 (2005).
  • Ahmed F , PakunluRI, SrinivasGet al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharmaceutics 3, 340–350 (2006).
  • Koide A , KishimuraA, OsadaK, Jang W-D, Yamasaki Y. Kataoka K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc.128, 5988–5989 (2006).
  • Kishimura A , LiamsuwanS, MatsudaHet al. pH-dependent permeability change and reversible structural transition of PEGylated polyion complex vesicles (PICsomes) in aqueous media. Soft Matter 5, 529–532 (2009).
  • Kishimura A , KoideA, OsadaK, YamasakiY, KataokaK. Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block lonomers: a physiologically available oxygen carrier. Angew. Chem. Int. Ed.46, 6085–6088 (2007).
  • Yamaoka T , TabataY, IkadaY. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci.83, 601–606 (1994).
  • Maeda H , MatsumuraY. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug6, 193–210 (1989).
  • Yuan F , DellianM, FukumuraD. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res.55, 3752–3756 (1995).
  • Byrne JD , BetancourtT, Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Delivery Rev.60, 1615–1626 (2008).
  • Bae Y , NishiyamaN, KataokaK. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjugate Chem.18, 1131–1139 (2007).
  • Dechantsreiter MA , PlankerE, MathaBet al. N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J. Med. Chem.42, 3033–3040 (1999).
  • Farokhzad OC , ChengJ, TeplyBAet al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).
  • Hoffman AS . The origins and evolution of ‘controlled‘ drug-delivery systems. J. Control. Release132, 153–163 (2008).
  • Jain RK , MunnLL, FukumuraD. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer2, 266–276 (2002).
  • Nishiyama N , NoriA, MaluginA, KasuyaY, KopečkováP, KopečekJ. Free and N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res.63, 7876–7882 (2003).
  • Koo AN , LeeHJ, KimSEet al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug-delivery. Chem. Commun. 6570–6572 (2008).
  • Vander Heiden MG , CantleyLC, ThompsonCB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324, 1029–1033 (2009).
  • West KR , OttoS. Reversible covalent chemistry in drug-delivery. Curr. Drug Discov. Technol.2, 123–160 (2005).
  • Bae Y , NishiyamaN, FukushimaS, KoyamaH, MatsumuraY, KataokaK. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem.16, 122–130 (2005).
  • Nasongkla N , ShuaiX, AiHet al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. 43, 6323–6327 (2004).
  • Oba M , FukushimaS, KanayamaNet al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing αvβ3 and αvβ5 integrins. Bioconjugate Chem. 18, 1415–1423 (2007).
  • Willmann JK , Van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat. Dev. Drug Discov.7, 591–607 (2008).
  • Cai W , ChenX. Nanoplatforms for targeted molecular imaging in living subjects. Small3, 1840–1854 (2007).
  • Rudin M , WeisslederR. Molecular imaging in drug discovery and development. Nat. Dev. Drug Discov.2, 123–131 (2003).
  • Sun S , ZengH, RobinsonDBet al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004).
  • Lee J -H, Huh Y-M, Jun Y-W et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med.13, 95–99 (2007).
  • Khemtong C , KessingerCW, GaoJ. Polymeric nanomedicine for cancer MR imaging and drug-delivery. Chem. Commun.24, 3497–3510 (2009).
  • Kumagai M , ImaiY, NakamuraTet al. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloid. Surface. B. 56, 174–181 (2007).
  • Yang J , Lee C-H, Ko H-J et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew. Chem. Int. Ed.46, 8836–8839 (2007).
  • Nasongkla N , BeyE, RenJMet al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug-delivery systems. Nano Lett. 6, 2427–2430 (2006).
  • Khemtong C , KessingerCW, RenJet al. In vivo off-resonance saturation magnetic sesonance imaging of αvβ3-targeted superparamagnetic nanoparticles. Cancer Res.69, 1651–1658 (2009).
  • Lee HJ , Jang K-S, Jang S et al. Poly(amino acid)s micelle-mediated assembly of magnetite nanoparticles for ultra-sensitive long-term MR imaging of tumors. Chem. Commun.46, 3559–3561 (2010).
  • Yang H -M, Lee HJ, Jang K-S et al. Poly(amino acid)-coated iron oxide nanoparticles as ultra-small magnetic resonance probes. J. Mater. Chem.19, 4566–4574 (2009).
  • Hamad I , MoghimiSM. Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opin. Drug Del.5, 205–219 (2008).
  • Kano MR , BaeY, IwataCet al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3360–3465 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.