227
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploiting Nutrient Transporters at the blood–brain Barrier to Improve Brain Distribution of Small Molecules

, , , &
Pages 775-784 | Published online: 03 Dec 2010

Bibliography

  • Pardridge WM . Drug targeting to the brain. Pharm. Res.24(9), 1733–1744 (2007).
  • Pardridge WM . Blood–brain barrier delivery. Drug Discov. Today12(1–2), 54–61 (2007).
  • Oku T , TjuvajevJG, MiyagawaTet al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res. 58(18), 4185–4192 (1998).
  • Neuwelt EA . Mechanisms of disease: the blood–brain barrier. Neurosurgery54(1), 131–142 (2004).
  • Smith QR . A review of blood–brain barrier transport techniques. Methods Mol. Med.89, 193–208 (2003).
  • Crone C , OlesenPS. Electrical resistance of brain microvascular endothelium. Brain Res.241(1), 49–55 (1982).
  • Nitta T , HataM, GotohSet al. Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell Biol. 161(3), 653–660 (2003).
  • Kniesel U , WolburgH. Tight junctions of the blood–brain barrier. Cell. Mol. Neurobiol.20(1), 57–76 (2000).
  • Huber JD Egleton DR, Davis PT. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci.24(12), 719–725 (2001).
  • Rapoport SI . Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol.20(2), 217–230 (2000).
  • Howles GP , BingKF, QiY, RosenzweigSJ, NightingaleKR, JohnsonGA. Contrast-enhanced in vivo magnetic resonance microscopy of the mouse brain enabled by noninvasive opening of the blood–brain barrier with ultrasound. Magn. Reson. Med.64(4), 995-1004 (2010).
  • Minn A , Ghersi-EgeaJF, PerrinR, LeiningerB, SiestG. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. Brain Res. Rev.16(1), 65–82 (1991).
  • Loscher W , PotschkaH, Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol.76(1), 22–76 (2005).
  • Oldendorf WH . Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol.221(6), 1629–1639 (1971).
  • Tamai , I, Tsuji A. Transporter-mediated permeation of drugs across the blood–brain barrier. J. Pharm. Sci.89(11), 1371–1388 (2000).
  • Tsuji A , TamaiI. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev.36(2–3), 277–290 (1999).
  • Miller DS . Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci.31(6), 246–254 (2010).
  • Allen DD , LockmanRP. The blood–brain barrier choline transporter as a brain drug delivery vector. Life Sci.73(13), 1609–1615 (2003).
  • Kusuhara , H, Sugiyama Y, Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx2(1), 73–85 (2005).
  • Smith QR , StollJ. Blood–brain barrier amino acid transport. In: Introduction to Blood–Brain Barrier. Pardridge MW (Ed.). Cambridge University Press, Cambridge, UK (1998).
  • Saheki A , TerasakiT, TamaiI, TsujiA. In vivo and in vitro blood–brain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharm. Res.11(2), 305–311 (1994).
  • Tsuji A , SahekiA, TamaiI, TerasakiT. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood–brain barrier. J. Pharmacol. Exp. Ther.267(3), 1085–1090 (1993).
  • Adkison KD , ShenDD. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J. Pharmacol. Exp. Ther.276(3), 1189–1200 (1996).
  • Alam MI , BegS, SamadAet al. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40(5), 385–403 (2010).
  • Girardin F . Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin. Neurosci.8(3), 311–321 (2006).
  • Uchino H , KanaiY, KimDKet al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol. Pharmacol. 61(4), 729–737 (2002).
  • Takada Y , VisticaDT, GreigNH, PurdonD, RapoportSI, SmithQR. Rapid high-affinity transport of a chemotherapeutic amino acid across the blood–brain barrier. Cancer Res.52(8), 2191–2196 (1992).
  • Matharu J , OkiJ, WorthenDR, SmithQR, CrooksPA. Regiospecific and conformationally restrained analogs of melphalan and DL-2-NAM-7 and their affinities for the large neutral amino acid transporter (system LAT1) of the blood–brain barrier. Bioorg. Med. Chem. Lett.20(12), 3688–3691 (2010).
  • Sekine T Cha HS, and Endou H, The multispecific organic anion transporter (OAT) family. Pflugers Arch.440(3), 337–350 (2000).
  • Ahn SY , EralySA, TsigelnyI, NigamSK. Interaction of organic cations with organic anion transporters. J. Biol. Chem.284(45), 31422–31430 (2009).
  • Tamai I , NozawaT, KoshidaM, NezuJ, SaiY, TsujiA. Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm. Res.18(9), 1262–1269 (2001).
  • Tamai I , NezuJ, UchinoHet al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273(1), 251–260 (2000).
  • Schmitt BM , GorbunovD, SchlachtbauerP. Charge-to-substrate ratio during organic cation uptake by rat OCT2 is voltage dependent and altered by exchange of glutamate 448 with glutamine. Am. J. Physiol. Renal Physiol.296(4), F709–F722 (2009).
  • Koepsell H Schmitt MB, Gorboulev V. Organic cation transporters. Rev. Physiol. Biochem. Pharmacol.150, 36–90 (2003).
  • Moaddel R , RavichandranS, BighiF, YamaguchiR, WainerIW. Pharmacophore modelling of stereoselective binding to the human organic cation transporter (hOCT1). Br. J. Pharmacol.151(8), 1305–1314 (2007).
  • Yamazaki M , TerasakiT, YoshiokaKet al. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm. Res. 11(11), 1516–1518 (1994).
  • Yamazaki M , TerasakiT, YoshiokaKet al. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: mepyramine uptake into bovine brain capillary endothelial cells in primary monolayer cultures. Pharm. Res. 11(7), 975–978 (1994).
  • Lockman PR , AllenDD. The transport of choline. Drug Dev. Ind. Pharm.28(7), 749–771 (2002).
  • Allen DD , SmithRQ. Characterization of the blood–brain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem.76(4), 1032–1041 (2001).
  • Allen DD , SmithRQ. Blood–brain barrier choline transport in the senescent rat. Neurosci. Lett.277(3), 198–202 (1999).
  • Klein J , KöppenA, LöffelholzK, SchmitthennerJ. Uptake and metabolism of choline by rat brain after acute choline administration. J. Neurochem.58(3), 870–876 (1992).
  • Smith QR , TakasatoY, SweeneyDJ, RapoportSI. Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique. J. Cereb. Blood Flow Metab.5(2), 300–311 (1985).
  • Smith QR , TakasatoY, RapoportIS. Kinetic analysis of L-leucine transport across the blood–brain barrier. Brain Res.311(1), 167–170 (1984).
  • Takasato Y , RapoportIS, SmithRQ. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol.247(3 Pt2), H484–H493 (1984).
  • Lockman PR , RoderEK, AllenDD. Inhibition of the rat blood–brain barrier choline transporter by manganese chloride. J. Neurochem.79(3), 588–594 (2001).
  • Dwoskin LP , WootersTE, SumithranSP et al. N,N´-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity. J. Pharmacol. Exp. Ther.326(2), 563–576 (2008).
  • Zhang Z , LockmanPR, MittapalliRK, AllenDD, DwoskinLP, CrooksPA. bis-Pyridinium cyclophanes: novel ligands with high affinity for the blood–brain barrier choline transporter. Bioorg. Med. Chem. Lett.18(20), 5622–5625 (2008).
  • Geldenhuys WJ , LockmanPR, NguyenTHet al. 3D-QSAR study of bis-azaaromatic quaternary ammonium analogs at the blood–brain barrier choline transporter. Bioorg. Med. Chem. 13(13), 4253–4261 (2005).
  • Geldenhuys WJ , MandaVK, MittapalliRKet al. Predictive screening model for potential vector-mediated transport of cationic substrates at the blood–brain barrier choline transporter. Bioorg. Med. Chem. Lett. 20(3), 870–877 (2010).
  • Lockman PR , MandaPK, GeldenhuysWJet al. Carrier-mediated transport of the quaternary ammonium neuronal nicotinic receptor antagonist N,N‘-dodecylbispicolinium dibromide at the blood–brain barrier. J. Pharmacol. Exp. Ther. 324(1), 244–250 (2008).
  • Zheng G , ZhangZ, LockmanPR et al. Bis-azaaromatic quaternary ammonium salts as ligands for the blood–brain barrier choline transporter. Bioorg. Med. Chem. Lett.20(11), 3208–3210 (2010).
  • Deuther-Conrad W , PattJT, LockmanPRet al. Norchloro-fluoro-homoepibatidine (NCFHEB) – a promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. Eur. Neuropsychopharmacol. 18(3), 222–229 (2008).
  • Allen DD , GeldenhuysWJ. Molecular modeling of blood–brain barrier nutrient transporters: in silico basis for evaluation of potential drug delivery to the central nervous system. Life Sci.78(10), 1029–1033 (2006).
  • Debatin KM , PoncetD, KroemerG. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene21(57), 8786–8803 (2002).
  • Chang C Ray A, Swaan P. In silico strategies for modeling membrane transporter function. Drug Discov. Today10(9), 663–671 (2005).
  • Geldenhuys WJ , AllenDD, LockmanRP. 3-D-QSAR and docking studies on the neuronal choline transporter. Bioorg. Med. Chem. Lett.20(16), 4870–4877 (2010).
  • Allen DD , LockmanPR, RoderKE, DwoskinLP, CrooksPA. Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood–brain barrier choline transporter. J. Pharmacol. Exp. Ther.304(3), 1268–1274 (2003).
  • Geldenhuys WJ , LockmanPR, McAfeeJH, FitzpatrickKT, Van der Schyf CJ, Allen DD. Molecular modeling studies on the active binding site of the blood–brain barrier choline transporter. Bioorg. Med. Chem. Lett.14(12), 3085–3092 (2004).
  • Geldenhuys WJ , MandaVK, MittapalliRKet al. Predictive screening model for potential vector-mediated transport of cationic substrates at the blood–brain barrier choline transporter. Bioorg. Med. Chem. Lett. 20(3), 870–877 (2010).
  • Salas-Burgos A , IserovichP, ZunigaF, VeraJC, FischbargJ. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys. J.87(5), 2990–2999 (2004).
  • Bednarczyk D , EkinsS, WikelJH, WrightSH. Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol. Pharmacol.63(3), 489–498 (2003).
  • Mehdipour AR , HamidiM. Brain drug targeting: a computational approach for overcoming blood–brain barrier. Drug Discov. Today14(21–22), 1030–1036 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.