6,212
Views
4
CrossRef citations to date
0
Altmetric
Review

Antibody–drug Conjugates: Using Monoclonal Antibodies for Delivery of Cytotoxic Payloads to Cancer Cells

&
Pages 397-416 | Published online: 09 Mar 2011

Bibliography

  • Pratt WB , RuddonRW, EnsmingerWD et al. Part 2. The Anticancer Drugs. Oxford University Press, UK 69–198 (1994).
  • Scheinberg DA , RosenblatTL, JurcicJGet al. Antibodies. In: Chemotherapy and Biotherapy: Principles and Practice (Fifth Edition). Chabner BA, Longo DL (Eds). Wolters Kluwer/Lippincott Williams & Wilkins, Health, PA, USA 465–494 (2011).
  • Boyiadzis M , FoonKA. Approved monoclonal antibodies for cancer therapy. Expert Opin. Biol. Ther.8(8), 1151–1158 (2008).
  • Reichert JM . Monoclonal antibodies in the clinic. Nat. Biotechnol.19(9), 819–822 (2001).
  • Lambert JM . Antibody–maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs Future35(6), 471–480 (2010).
  • Senter PD . Potent antibody–drug conjugates for cancer therapy. Curr. Opin. Chem. Biol.13 (3), 235–244 (2009).
  • Goldmacher VS , BlattlerWA, LambertJM, ChariRVJ. Immunotoxins and antibody–drug conjugates for cancer treatment. In: Biomedical Aspects of Drug Targeting. Torchilin V, Muzykantov V (Eds). 291–309, Kluwer Academic Publishers, MA, USA (2002).
  • Chari RV . Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res.41(1), 98–107 (2008).
  • Ducry L , StumpB. Antibody–drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem.21(1), 5–13 (2010).
  • Kovtun YV , GoldmacherVS. Cell killing by antibody–drug conjugates. Cancer Lett.255(2), 232–240 (2007).
  • Carter PJ , SenterPD. Antibody–drug conjugates for cancer therapy. Cancer J.14(3), 154–169 (2008).
  • Vater AV , GoldmacherVS. Antibody–cytotoxic compound conjugates for oncology. In: Macromolecular Anticancer Therapeutics. Reddy LH, Couvreur P (Eds). Springer, NY, USA 331–369 (2009).
  • Henry MD , WenS, SilvaMDet al. A prostate-specific membrane antigen-targeted monoclonal antibody–chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res. 64(21), 7995–8001 (2004).
  • Ma D , HopfCE, MalewiczADet al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin. Cancer Res. 12(8), 2591–2596 (2006).
  • Galsky MD , EisenbergerM, Moore-CooperSet al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J. Clin. Oncol. 26(13), 2147–2154 (2008).
  • Pan C , TerrettJ, RaoCet al. Human antibody conjugates of potential utility for prostate cancer therapy: a comparison of MGBA conjugates with antibodies targeting a cell surface target (prostate-specific membrane antigen) and an extracellular matrix target (Mindin/RG-1). AACR Annual Meeting Abstracts4062 (2008).
  • Beeram M , BurrisHA, ModiSet al. A Phase I study of trastuzumab–DM1, a first-in-class HER2 antibody–drug conjugate (ADC), given every 3 weeks to patients with HER2+ metastatic breast cancer. Am. Soc. Clin. Onc. Annu. Meet. Proc. (2008) (Abstract #1028).
  • Burris HA , VukeljaS, RugoHSet al. A Phase II study of trastuzumab–DM1 (T–DM1), a HER2 antibody–drug conjugate, in patients with HER2-positive metastatic breast cancer. ASCO Breast Cancer Symposium Proceedings (2008) (Abstract 155).
  • Holden SN , BeeramM, KropIEet al. A Phase I study of weekly dosing of trastuzumab–DM1 (T–DM1) in patients with advanced HER2+ breast cancer. Am. Soc. Clin. Onc. Annu. Meet. Proc. (2008) (Abstract 1029).
  • Press MF , Cordon-CardoC, SlamonDJ. Expression of the HER2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene5(7), 953–962 (1990).
  • Carter P , SmithL, RyanM. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr. Relat. Cancer11(4), 659–687 (2004).
  • Xie H , BlattlerWA. In vivo behavior of Antibody–drug conjugates for the targeted treatment of cancer. Expert Opin. Biol. Ther.6(3), 281–291 (2006).
  • Kononen J , BubendorfL, KallioniemiAet al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998).
  • Kovtun YV , AudetteCA, YeYet al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 66(6), 3214–3221 (2006).
  • Liu C , TadayoniBM, BourretLAet al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl Acad. Sci. USA 93 (16), 8618–8623 (1996).
  • Bhaskar V , LawDA, IbsenEet al. E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res. 63 (19), 6387–6394 (2003).
  • Walter RB , RadenBW, KamikuraDMet al. Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105 (3), 1295–1302 (2005).
  • Smith LM , NesterovaA, AlleySCet al. Potent cytotoxicity of an auristatin-containing antibody–drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol. Cancer Ther. 5(6), 1474–1482 (2006).
  • Smith LM , NesterovaA, RyanMCet al. CD133/prominin-1 is a potential therapeutic target for antibody–drug conjugates in hepatocellular and gastric cancers. Br. J. Cancer 99 (1), 100–109 (2008).
  • Oflazoglu E , StoneIJ, GordonKet al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res. 14(19), 6171–6180 (2008).
  • Ingle GS , ChanP, ElliottJMet al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19–drug conjugate. Br. J. Haematol. 140 (1), 46–58 (2008).
  • Polson AG , WilliamsM, GrayAMet al. Anti-CD22–MCC–DM1: an antibody–drug conjugate with a stable linker for the treatment of non-Hodgkin‘s lymphoma. Leukemia 24(9), 1566–1573 (2010).
  • Polson A . Antibody–drug conjugates for the treatment of non-Hodgkin‘s lymphoma. Presented at: The Drug Discovery and Development of Innovative Therapeutics Conference. Boston, MA, USA, 7 August 2008.
  • Younes A , Forero-TorresA, BartlettNLet al. Objective responses in a Phase I dose-escalation study of SGN-35, a novel antibody–drug conjugate (ADC) targeting CD30, in patients with relapsed or refractory Hodgkin lymphoma. Am. Soc. Clin. Onc. Annu. Meet. Proc. 8526 (2008).
  • Harries M , SmithI. The development and clinical use of trastuzumab (Herceptin®). Endocr. Relat. Cancer.9 (2), 75–85 (2002).
  • Lewis Phillips GD , LiG, DuggerDLet al. Targeting HER2-positive breastcancer with trastuzumab–DM1, an antibody–cytotoxic drug conjugate. Cancer Res. 68 (22), 9280–9290 (2008).
  • Krop I , LoRussoP, MillerKDet al. A Phase II study of trastuzumab–DM1 (T–DM1), a novel HER2 antibody–drug conjugate, in patients previously treated with lapatinib, trastuzumab, and chemotherapy. Presented at: The 33rd Annual CTRC-AACR San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 12 December 2009. (Abstract 5090).
  • Wahl AF , KlussmanK, ThompsonJDet al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects anti-tumor activity in models of Hodgkin‘s disease. Cancer Res. 62(13), 3736–3742 (2002).
  • Bartlett NL , YounesA, CarabasiMHet al. A Phase I multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 111(4), 1848–1854 (2008).
  • Fanale M , BartlettNL, Forero-TorresAet al. The antibody–drug conjugate brentuximab vedotin (SGN-35) induced multiple objective responses in patients with relapsed or refractory cd30-positive lymphomas in a Phase I weekly dosing study. Presented at: The 51st ASH Annual Meeting. New Orleans, LA, USA, 5–8 December 2009 (Abstract 2731).
  • Junttila TT , LiG, ParsonsKet al. Trastuzumab–DM1 (T–DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. DOI: 10.1007/s10549-010-1090-x (2010) (Epub ahead of print).
  • Sievers EL , AppelbaumFR, SpielbergerRTet al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a Phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93(11), 3678–3684 (1999).
  • Arceci RJ , SandeJ, LangeBet al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 106(4), 1183–1188 (2005).
  • Sievers EL , LarsonRA, StadtmauerEAet al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol. 19(13), 3244–3254 (2001).
  • Krop IE , BeeramM, ModiSet al. Phase I study of trastuzumab–DM1, an HER2 antibody–drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 28(16), 2698–2704 (2010).
  • Teicher BA . Antibody–drug conjugate targets. Curr. Cancer Drug Targets9(8), 982–1004 (2009).
  • Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Wu Y , Cain-HomC, ChoyLet al. Therapeutic antibody targeting of individual notch receptors. Nature 464(7291), 1052–1057 (2010).
  • Mukherjee S , RichardsonAM, Rodriguez-CanalesJet al. Identification of EpCAM as a molecular target of prostate cancer stroma. Am. J. Pathol. 175(6), 2277–2287 (2009).
  • Hofmeister V , SchramaD, BeckerJC. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol. Immunother.57(1), 1–17 (2008).
  • Schliemann C , NeriD. Antibody-based vascular tumor targeting. Recent Results Cancer Res.180, 201–216 (2010).
  • Minchinton AI , TannockIF. Drug penetration in solid tumours. Nat. Rev. Cancer6(8), 583–592 (2006).
  • Hanahan D , WeinbergRA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Mahadevan D , Von Hoff DD. Tumor–stroma interactions in pancreatic ductal adenocarcinoma. Mol. Cancer Ther.6(4), 1186–1197 (2007).
  • Vater CA , ManningC, MillarHet al. Anti-tumor efficacy of the integrin-targeted immunoconjugate IMGN388 in preclinical models. EORTC-NCI-AACR-2008. Molecular Targets and Cancer therapeutics. (2008) (Abstract #ENA-0399).
  • Thompson DS , PatnaikA, BendellJCet al. A Phase I dose-escalation study of IMGN388 in patients with solid tumors. 28(15s) J. Clin. Oncol. (2010) (Abstract 3058).
  • Ostermann E , Garin-ChesaP, HeiderKHet al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin. Cancer Res. 14(14), 4584–4592 (2008).
  • Terrett JA , DevasthaliV, PanCet al. Ptk7 as a direct and tumor stroma target in multiple solid malignancies. Presented at: The 99th Annual Meeting of the American Association for Cancer Research. Philadelphia, PA, USA, 11–15 April 2008 (Abstract #1526).
  • Boman BM , WichaMS. Cancer stem cells: a step toward the cure. J. Clin. Oncol.26(17), 2795–2799 (2008).
  • Okamoto OK , PerezJF. Targeting cancer stem cells with monoclonal antibodies: a new perspective in cancer therapy and diagnosis. Expert. Rev. Mol. Diagn.8(4), 387–393 (2008).
  • Clarke MF , DickJE, DirksPBet al. Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66(19), 9339–9344 (2006).
  • Bonnet D , DickJE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Gil J , StembalskaA, PeszKAet al. Cancer stem cells: the theory and perspectives in cancer therapy. J. Appl. Genet. 49(2), 193–199 (2008).
  • Jones RJ , MatsuiWH, SmithBD. Cancer stem cells: are we missing the target? J. Natl Cancer Inst.96(8), 583–585 (2004).
  • Bao S , WuQ, McLendonREet al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120), 756–760 (2006).
  • Bao S , WuQ, SathornsumeteeSet al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66(16), 7843–7848 (2006).
  • Dylla SJ , BevigliaL, ParkIKet al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3(6), E2428 (2008).
  • Eyler CE , RichJN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol.26(17), 2839–2845 (2008).
  • Jin L , HopeKJ, ZhaiQet al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12(10), 1167–1174 (2006).
  • Hosen N , ParkCY, TatsumiNet al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104(26), 11008–11013 (2007).
  • Stabile H , MitolaS, MoroniEet al. Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor. Blood 109(5), 1834–1840 (2007).
  • Sneddon JB , ZhenHH, MontgomeryKet al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Natl Acad. Sci. USA 103(40), 14842–14847 (2006).
  • Piccirillo SG , ReynoldsBA, ZanettiNet al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120), 761–765 (2006).
  • Namkoong H , ShinSM, KimHKet al. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein. BMC Cancer 6, 74 (2006).
  • Kohler G , MilsteinC. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256(5517), 495–497 (1975).
  • Almagro JC , FranssonJ. Humanization of antibodies. Front. Biosci.13, 1619–1633 (2008).
  • Jones PT , DearPH, FooteJet al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069), 522–525 (1986).
  • Roguska MA , PedersenJT, HenryAHet al. A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing. Protein Eng. 9(10), 895–904 (1996).
  • Roguska MA , PedersenJT, KeddyCAet al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl Acad. Sci. USA 91(3), 969–973 (1994).
  • Hwang WY , FooteJ. Immunogenicity of engineered antibodies. Methods36(1), 3–10 (2005).
  • Roopenian DC , AkileshS. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol.7(9), 715–725 (2007).
  • Lonberg N . Human antibodies from transgenic animals. Nat. Biotechnol.23(9), 1117–1125 (2005).
  • Lonberg N . Fully human antibodies from transgenic mouse and phage display platforms. Curr. Opin. Immunol.20(4), 450–459 (2008).
  • Hoogenboom HR . Selecting and screening recombinant antibody libraries. Nat. Biotechnol.23(9), 1105–1116 (2005).
  • Kim SJ , ParkY, HongHJ. Antibody engineering for the development of therapeutic antibodies. Mol. Cells20(1), 17–29 (2005).
  • Carter PJ . Potent antibody therapeutics by design. Nat. Rev. Immunol.6(5), 343–357 (2006).
  • Mascelli MA , ZhouH, SweetRet al. Molecular, biologic, and pharmacokinetic properties of monoclonal antibodies: impact of these parameters on early clinical development. J. Clin. Pharmacol. 47(5), 553–565 (2007).
  • McDonagh CF , KimKM, TurcottEet al. Engineered anti-CD70 antibody–drug conjugate with increased therapeutic index. Mol. Cancer Ther. 7(9), 2913–2923 (2008).
  • Strome SE , SausvilleEA, MannD. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist12(9), 1084–1095 (2007).
  • Fujimori K , CovellDG, FletcherJEet al. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J. Nucl. Med. 31(7), 1191–1198 (1990).
  • Adams GP , SchierR, McCallAMet al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61(12), 4750–4755 (2001).
  • Schmidt MM , WittrupKD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther.8(10), 2861–2871 (2009).
  • Jefferis R . Antibody therapeutics: isotype and glycoform selection. Expert Opin. Biol. Ther.7(9), 1401–1413 (2007).
  • Salfeld JG . Isotype selection in antibody engineering. Nat. Biotechnol.25(12), 1369–1372 (2007).
  • Stasi R . Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin. Biol. Ther.8(4), 527–540 (2008).
  • Hamann PR , HinmanLM, HollanderIet al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13(1), 47–58 (2002).
  • DiJoseph JF , GoadME, DougherMMet al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin. Cancer Res. 10(24), 8620–8629 (2004).
  • DiJoseph JF , ArmellinoDC, BoghaertERet al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103(5), 1807–1814 (2004).
  • van der Neut Kolfschoten M , SchuurmanJ, LosenMet al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844), 1554–1557 (2007).
  • Hamid O , SznolM, PavlickACet al. Frequent dosing and GPNMB expression with CDX-011 (CR011-vcMMAE), an antibody–drug conjugate (ADC), in patients with advanced melanoma. J. Clin. Oncol. (Meeting Abstracts) 28(Suppl. 15), 8525 (2010).
  • Yoo EM , WimsLA, ChanLAet al. Human IgG2 can form covalent dimers. J. Immunol. 170(6), 3134–3138 (2003).
  • Ryan MC , HeringM, PeckhamDet al. Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol. Cancer Ther. 6(11), 3009–3018 (2007).
  • Desjarlais JR , LazarGA, ZhukovskyEAet al. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer‘s perspective. Drug Discov. Today 12(21–22), 898–910 (2007).
  • Lazar GA , DangW, KarkiSet al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103(11), 4005–4010 (2006).
  • Shields RL , LaiJ, KeckRet al. Lack offucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277(30), 26733–26740 (2002).
  • Shinkawa T , NakamuraK, YamaneNet al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278(5), 3466–3473 (2003).
  • Schuster M , UmanaP, FerraraCet al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 65(17), 7934–7941 (2005).
  • Lambert JM . Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr. Opin. Pharmacol.5(5), 543–549 (2005).
  • Chari RV . Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv. Drug Deliv. Rev.31(1–2), 89–104 (1998).
  • Chari RV , MartellBA, GrossJLet al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res. 52(1), 127–131 (1992).
  • Hinman LM , HamannPR, WallaceRet al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of anti-tumor antibiotics. Cancer Res. 53(14), 3336–3342 (1993).
  • Singh R , EricksonHK. Antibody-cytotoxic agent conjugates: preparation and characterization. In: Methods in Molecular Biology: Therapeutic Antibodies: Methods and Protocols525, 445–467 (2008).
  • Baloglu E , MillerML, RollerEEet al. Synthesis and biological evaluation of novel taxoids designed for targeted delivery to tumors. Bioorg. Med. Chem. Lett. 14(23), 5885–5888 (2004).
  • Miller ML , RollerEE, WuXet al. Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies. Bioorg. Med. Chem. Lett. 14(15), 4079–4082 (2004).
  • Miller ML , RollerEE, ZhaoRYet al. Synthesis of taxoids with improved cytotoxicity and solubility for use in tumor-specific delivery. J. Med. Chem. 47(20), 4802–4805 (2004).
  • Ojima I , GengX, WuXet al. Tumor-specific novel taxoid–monoclonal antibody conjugates. J. Med. Chem. 45(26), 5620–5623 (2002).
  • Burke PJ , SenterPD, MeyerDWet al. Design, synthesis, and biological evaluation of antibody–drug conjugates comprised of potent camptothecin analogues. Bioconjug. Chem. 20(6), 1242–1250 (2009).
  • Burke PJ , TokiBE, MeyerDWet al. Novel immunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorg. Med. Chem. Lett. 19(10), 2650–2653 (2009).
  • Bross PF , BeitzJ, ChenGet al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7(6), 1490–1496 (2001).
  • Zein N , SinhaAM, McGahrenWJet al. Calicheamicin γ 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240(4856), 1198–1201 (1988).
  • DiJoseph JF , DougherMM, KalyandrugLBet al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin‘s B-cell lymphoma. Clin. Cancer. Res. 12(1), 242–249 (2006).
  • DiJoseph JF , KhandkeK, DougherMMet al. CMC-544 (inotuzumab ozogamicin): a CD22-targeted immunoconjugate of calicheamicin. Hematology Meeting Reports 5(6), 74–77 (2008).
  • DiJoseph JF , DougherMM, ArmellinoDCet al. CD20-specific antibody-targeted chemotherapy of non-Hodgkin‘s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol. Immunother. 56(7), 1107–1117 (2007).
  • Boghaert ER , SridharanL, KhandkeKMet al. The oncofetal protein, 5T4, is a suitable target for antibody-guided anticancer chemotherapy with calicheamicin. Int. J. Oncol. 32 (1), 221–234 (2008).
  • Hamann PR , HinmanLM, BeyerCFet al. A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts. Bioconjug. Chem. 16(2), 354–360 (2005).
  • MacMillan KS , BogerDL. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J. Med. Chem.52(19), 5771–5780 (2009).
  • Chari RV , JackelKA, BourretLAet al. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res. 55(18), 4079–4084 (1995).
  • Tietze LF , KrewerB. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies. Chem. Biol. Drug Des.74(3), 205–211 (2009).
  • Tietze LF , KrewerB. Novel analogues of CC-1065 and the duocarmycins for the use in targeted tumour therapies. Anticancer Agents Med. Chem.9(3), 304–325 (2009).
  • Tietze LF , PankninO, KrewerBet al. Synthesis and biological evaluation of a novel pentagastrin–toxin conjugate designed for a targeted prodrug monotherapy of cancer. Int. J. Mol. Sci. 9(5), 821–837 (2008).
  • King D , TerrettJ, CardarelliPet al. Mechanism of activation of a human anti-cd70 antibody-mgba conjugate and efficacy in a nude rat model of renal carcinoma. AACR Meeting Abstracts (1 Annual Meeting 2008). 4057 (2008).
  • Cardarelli P , KingD, TerrettJet al. Efficacy and safety of a human anti-CD70 antibody-MGBA conjugate. AACR Meeting Abstracts (1 Annual Meeting 2008). 4061 (2008).
  • Widdison WC , WilhelmSD, CavanaghEEet al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem. 49(14), 4392–4408 (2006).
  • Lopus M , OroudjevE, WilsonLet al. Maytansine derivatives and metabolites of antibody–maytansinoid conjugates inhibit microtubule polymerization and strongly suppress microtubule dynamics. AACR Meeting Abstracts (1 Annual Meeting 2008). 1406 (2008).
  • Oroudjev E , LopusM, WilsonLet al. Antibody–maytansinoid conjugates affect microtubule morphology and suppress microtubule dynamics in live cells. AACR Meeting Abstracts (1 Annual Meeting 2008). 1403 (2008).
  • Remillard S , RebhunLI, HowieGAet al. Antimitotic activity of the potent tumor inhibitor maytansine. Science 189(4207), 1002–1005 (1975).
  • Drewinko B , PatchenM, YangLYet al. Differential killing efficacy of twenty anti-tumor drugs on proliferating and nonproliferating human tumor cells. Cancer Res. 41(6), 2328–2333 (1981).
  • Murphy M , PhinneyS, AbOet al. Immunohistochemical analysis of the glycotope targeted by huC242-DM4 indicates strong expression in several tumor types with unmet medical need. AACR Meeting Abstracts (1 Annual Meeting 2008). 4898 (2008).
  • Tolcher AW , OchoaL, HammondLAet al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a Phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21(2), 211–222 (2003).
  • Baeckstrom D , HanssonGC, NilssonOet al. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J. Biol. Chem. 266(32), 21537–21547 (1991).
  • Helft PR , SchilskyRL, HokeFJet al. A Phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors. Clin. Cancer Res. 10(13), 4363–4368 (2004).
  • Polson AG , YuSF, ElkinsKet al. Antibody–drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood 110(2), 616–623 (2007).
  • Stephan JP , ChanP, LeeCet al. Anti-CD22–MCC–DM1 and MC–MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug. Chem. 19(8), 1673–1683 (2008).
  • Mayo MF LA, Wang L, Wunderli P, Payne G, Xie H, Lutz RJ. In vivo stability in mice of SAR566658 (huDS6-DM4), an immunoconjugate targeting solid tumors. EORTC-NCI-AACR Proceedings (2008) (Abstract 533).
  • Carrigan C , Zuany-AmorimC, MayoMFet al. Preclinical evaluation of SAR566658 (huDS6-DM4) in mice bearing human tumor xenografts of breast, ovarian, lung, cervical and pancreatic cancer. EORTC Meeting Abstracts Annual Meeting (2008) (Abstract 525).
  • Bai R , PettitGR, HamelE. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem. Pharmacol.39(12), 1941–1949 (1990).
  • Doronina SO , TokiBE, TorgovMYet al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21(7), 778–784 (2003).
  • Doronina SO , MendelsohnBA, BoveeTDet al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17(1), 114–124 (2006).
  • Gerber H -P, Kung-Sutherland M, Stone I et al. Potent anti-tumor activity of the anti-CD19 auristatin antibody–drug conjugate SGN-19A in rituximab sensitive and resistant lymphomas. EORTC Meeting Abstracts (2008) (Abstract 507).
  • Gerber HP , Kung-SutherlandM, StoneIet al. Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12–vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 113(18), 4352–4361 (2009).
  • Dornan D , BennettF, ChenYet al. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti-CD79b–vcMMAE, for the treatment of non-Hodgkin lymphoma. Blood 114(13), 2721–2729 (2009).
  • Jackson D , GooyaJ, MaoSet al. A human antibody–drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 68(22), 9367–9374 (2008).
  • Lee JW , HanHD, ShahzadMMet al. EphA2 immunoconjugate as molecularly targeted chemotherapy for ovarian carcinoma. J. Natl Cancer Inst. 101(17), 1193–1205 (2009).
  • Alley SC , BenjaminDR, JeffreySCet al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 19(3), 759–765 (2008).
  • Doronina SO , BoveeTD, MeyerDWet al. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug. Chem. 19(10), 1960–1963 (2008).
  • Wang L , AmphlettG, BlattlerWAet al. Structural characterization of the maytansinoid–monoclonal antibody immunoconjugate, huN901–DM1, by mass spectrometry. Protein Sci. 14(9), 2436–2446 (2005).
  • Junutula JR , RaabH, ClarkSet al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26(8), 925–932 (2008).
  • Hamblett KJ , SenterPD, ChaceDFet al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10(20), 7063–7070 (2004).
  • McDonagh CF , TurcottE, WestendorfLet al. Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng. Des. Sel. 19(7), 299–307 (2006).
  • Wu G , FangYZ, YangSet al. Glutathione metabolism and its implications for health. J. Nutr. 134(3), 489–492 (2004).
  • Mills BJ , LangCA. Differential distribution of free and bound glutathione and cyst(e)ine in human blood. Biochem. Pharmacol.52(3), 401–406 (1996).
  • Appenzeller-Herzog C , EllgaardL. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta1783(4), 535–548 (2008).
  • Ciechanover A . Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Hematology Am. Soc. Hematol. Educ. Program1–12, 505–506 (2006).
  • Hamann PR , HinmanLM, BeyerCFet al. An anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 13(1), 40–46 (2002).
  • Boghaert ER , KhandkeKM, Sridharan Let al. Determination of pharmacokinetic values of calicheamicin–antibody conjugates in mice by plasmon resonance analysis of small (5 microl) blood samples. Cancer Chemother. Pharmacol.61(6), 1027–1035 (2008).
  • Dowell JA , Korth-BradleyJ, LiuHet al. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J. Clin. Pharmacol. 41(11), 1206–1214 (2001).
  • Kovtun YV , AudetteCA, MayoMFet al. Antibody–maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 70(6), 2528–2537 (2010).
  • Lutz RJ , XieH, WiddisonWCet al. HuC242-DM4, an antibody–maytansinoid conjugate with superior preclinical activity in human CanAg-positive tumor xenograft models in SCID mice. AACR Meeting Abstracts2005(1), 334–335 (2005).
  • Erickson HK , ParkPU, WiddisonWCet al. Antibody–maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66(8), 4426–4433 (2006).
  • Erickson H , WilhelmS, WiddisonWet al. Evaluation of the cytotoxic potencies of the major maytansinoid metabolites of antibody–maytansinoid conjugates detected in vitro and in preclinical mouse models. AACR Meeting Abstracts 2008 (Annual Meeting), 2150 (2008).
  • Francisco JA , CervenyCG, MeyerDLet al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102(4), 1458–1465 (2003).
  • Okeley NM , MiyamotoJB, ZhangXet al. Intracellular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clin. Cancer Res. 16(3), 888–897 (2010).
  • Sanderson RJ , HeringMA, JamesSFet al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res.11(2 Part 1), 843–852 (2005).
  • Walter RB , RadenBW, HongTCet al. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 102(4), 1466–1473 (2003).
  • Linenberger ML , HongT, FlowersDet al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98(4), 988–994 (2001).
  • Leonard GD , FojoT, BatesSE. The role of ABC transporters in clinical practice. Oncologist8(5), 411–424 (2003).
  • Gottesman MM , PastanI. The multidrug transporter, a double-edged sword. J. Biol. Chem.263(25), 12163–12166 (1988).
  • Takara K , SakaedaT, OkumuraK. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr. Pharm. Des.12(3), 273–286 (2006).
  • Hamann PR , HinmanLM, BeyerCFet al. An anti-MUC1 antibody–calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug. Chem. 16(2), 346–353 (2005).
  • Guillemard V , Uri Saragovi H. Prodrug chemotherapeutics bypass P-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity. Oncogene23(20), 3613–3621 (2004).
  • Kovtun Y AC, Maloney E, Mayo M et al. Novel antibody–maytansinoid conjugates with improved efficacy against multidrug-resistant tumors. EORTC Proceedings (2008) (Abstract 518).
  • DiJoseph JF , DougherMM, ArmellinoDCet al. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21(11), 2240–2245 (2007).
  • Roepstorff K , GrovdalL, GrandalMet al. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem. Cell. Biol. 129(5), 563–578 (2008).
  • Tassone P , GozziniA, GoldmacherVet al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2´-deacetyl-N2´-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res.64(13), 4629–4636 (2004).
  • Jensen M , BertholdF. Targeting the neural cell adhesion molecule in cancer. Cancer Lett.258(1), 9–21 (2007).
  • Whiteman KR , MurphyM.F, Cohane KP et al. Preclinical evaluation of IMGN901 (huN901-DM1) as a potential therapeutic for ovarian cancer. Am. Assoc. Clin. Res. Annu. Meet. (2008) (Abstract 2135).
  • Roy DC , OuelletS, Le Houillier C et al. Elimination of neuroblastoma and small-cell lung cancer cells with an antineural cell adhesion molecule immunotoxin. J. Natl. Cancer Inst.88(16), 1136–1145 (1996).
  • Fossella F , WollPJ, LoriganPet al. Investigation of IMGN901 in CD56+ solid tumors: results from a Phase I/II trial (study 001) and a Phase I trial (study 002). Presented at: The 13th World Conference on Lung Cancer. San Francisco, CA, USA, 31 July– 4 August 2009.
  • Woll PJ , LoriganP, O‘BrienMet al. Clinical experience of IMGN901 (BB-10901, huN901-DM1) in patients with Merkel-cell carcinoma (MCC). AACR-NCI-EORTC (2009) (Abstract B237).
  • Thompson D , PatnaikA, BendellJet al. A Phase I dose-escalation study of IMGN388 in patients with solid tumors. J. Clin. Oncol. 28(15s) (2010) (Abstract 3058).
  • Aboukameel A , Goustin A-S, Mohammad R et al. Superior anti-tumor activity of the CD19-directed immunotoxin, SAR3419 to rituximab in non-Hodgkin‘s xenograft animal models: preclinical evaluation. ASH Annual Meeting Abstracts110, (2007) (Abstract 2339).
  • Ikeda H , HideshimaT, LutzRJet al. The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has potent and selective cytotoxicity against cd138 positive multiple myeloma cells in vitro and in vivo. ASH Annual Meeting Abstracts. 112(11), 1716 (2008).
  • Chanan-Khan AA , JagannathS, HeffnerLTet al. Phase I study of BT062 given as repeated single dose once every 3 weeks in patients with relapsed or relapsed/refractory multiple myeloma. ASH Annual Meeting Abstracts 114(22), 1862 (2009).
  • Oflazoglu E , KisslerKM, SieversELet al. Combination of the anti-CD30–auristatin-E antibody–drug conjugate (SGN-35) with chemotherapy improves antitumour activity in Hodgkin lymphoma. Br. J. Haematol. 142(1), 69–73 (2008).
  • Hwu P , SznolM., Pavlick A. et al. A Phase I/II study of CRO-11–vcMMAE, an antibody–drug conjugate, in patients with unresectable stage III or stage IV melanoma. Am. Soc. Clin. Onc. Annu. Meet. Proc.9029 (2008).
  • Sznol M , HamidO, HwuPet al. Pharmacokinetics (PK) of CR011–vcMMAE, an antibody–drug conjugate (ADC), in a Phase (Ph) I study of patients (pts) with advanced melanoma. J. Clin. Oncol. (Meeting Abstracts) 27(15S), 9063 (2009).
  • Tse KF , JeffersM, PollackVAet al. CR011, a fully human monoclonal antibody–auristatin E conjugate, for the treatment of melanoma. Clin. Cancer Res. 12(4), 1373–1382 (2006).
  • Kantoff P , PetrylakDP, PomerantzMet al. First-in-human Phase I trial of prostate-specific membrane antigen antibody drug conjugate (PSMA ADC) in taxane-refractory prostate cancer. J. Clin. Oncol. 28(15S), TPS245 (2010).
  • Tolcher AW , ForouzeshB, McCreeryHet al. A Phase I and pharmacokinetic study of BB-10901, a maytansinoid immunoconjugate, in CD56-expressing tumors. Presented at: The EORTC–NCI–AACR Symposium on Molecular Targets and Cancer Therapeutics (2005).
  • Chanan-Khan AA , JagannathS, MunshiNCet al. Phase I study of huN901-DM1 (BB-10901) in patients with relapsed and relapsed/refractory CD56-positive multiple myeloma. ASH Annual Meeting Abstracts, Part 1. 110, 1174 (2007).
  • McCann J , FossellaFV, Villalona-CaleroMAet al. Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer (SCLC) and CD56-positive small-cell carcinoma. Am. Soc. Clin. Onc. Annu. Meet. Proc. 25, 18084 (2007).
  • Giles F Morariu-Zamfir R, Lambert JM, Verstovsek S et al. Phase I study of AVE9633, an anti-CD33–maytansinoid immunoconjugate, administered as an intravenous infusion in patients with refractory/relapsed CD33-positive acute myeloid leukemia (AML). Am. Soc. Hematol. Annu. Meet. Proc. (2006).
  • Larson RA , SieversEL, StadtmauerEAet al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg®) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104(7), 1442–1452 (2005).
  • Giles FJ . Gemtuzumab ozogamicin: promise and challenge in patients with acute myeloid leukemia. Expert Rev. Anticancer Ther.2(6), 630–640 (2002).
  • Sauter A , KloftC, GronauSet al. Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck. Int. J. Oncol. 30(4), 927–935 (2007).
  • Rupp U , Schoendorf-HollandE, EichbaumMet al. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a Phase I study. Anticancer Drugs 18(4), 477–485 (2007).
  • Tijink BM , ButerJ, de Bree R et al. A Phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin. Cancer Res.12(20 Part 1), 6064–6072 (2006).
  • Riechelmann H , SauterA, GolzeWet al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 44(9), 823–829 (2008).
  • Heider KH , MulderJWR, OstermannEet al. Splice variants of the cell surface glycoprotein CD44 associated with metastatic tumour cells are expressed in normal tissues of humans and cynomolgus monkeys. Eur. J. Cancer 31(13–14), 2385 (1995).
  • van der Velden VH , BoeckxN, JedemaIet al. High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg®) treatment in acute myeloid leukemia patients. Leukemia 18(5), 983–988 (2004).
  • Davies Q , PerkinsAC, FrierMet al. The effect of circulating antigen on the biodistribution of the engineered human antibody hCTM01 in a nude mice model. Eur. J. Nucl. Med. 24(2), 206–209 (1997).
  • Baselga J , TripathyD, MendelsohnJet al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14(3), 737–744 (1996).
  • Pegram MD , LiptonA, HayesDFet al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 16(8), 2659–2671 (1998).
  • Qin AW , WatermillJ, MasticoRAet al. The pharmacokinetics and pharmacoldynamics of IMGN242 (huC242-DM4) in patients with CanAg-expressing solid tumors. Am. Soc. Clin. Onc. Annu. Meet. Proc. 3066 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.