276
Views
1
CrossRef citations to date
0
Altmetric
Review

Pulmonary Delivery of Inhalable Nanoparticles: Dry Powder Inhalers

, , , , &
Pages 1313-1324 | Published online: 13 Oct 2011

Bibliography

  • Davis ME , ChenZG, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7(9), 771–782 (2008).
  • Fukami T , IshiiT, IoTet al. Nanoparticle processing in the solid state dramatically increases the cell membrane permeation of a cholesterol-lowering drug, probucol. Mol. Pharm. 6(3), 1029–1035 (2009).
  • Khan JA , KainthanRK, GanguliM, KizhakkedathuJN, SinghY, MaitiS. Water soluble nanoparticles from PEG-based cationic hyperbranched polymer and RNA that protect RNA from enzymatic degradation. Biomacromolecules7(5), 1386–1388 (2006).
  • Wong HL , BendayanR, RauthAM, XueHY, BabakhanianK, WuXY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer–lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther.317(3), 1372–1381 (2006).
  • Brannon-Peppas L , BlanchetteJO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev.56(11), 1649–1659 (2004).
  • Gipps EM , GroscurthP, KreuterJ, SpeiserPP. Distribution of polyhexylcyanoacrylate nanoparticles in nude mice over extended times and after repeated injection. J. Pharm. Sci.77(3), 208–209 (1988).
  • Moghimi SM , HunterAC, MurrayJC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2), 283–318 (2001).
  • Calvo P , Vila-JatoJL, AlonsoMJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J. Pharm. Sci.85(5), 530–536 (1996).
  • Cosco D , CeliaC, CilurzoF, TrapassoE, PaolinoD. Colloidal carriers for the enhanced delivery through the skin. Expert Opin. Drug Deliv.5(7), 737–755 (2008).
  • Azarmi S , RoaWH, LobenbergR. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev.60(8), 863–875 (2008).
  • Al-Hallak KM , AzarmiS, Anwar-MohamedA, RoaWH, LobenbergR. Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur. J. Pharm. Biopharm.76(1), 112–119 (2010).
  • Chow AH , TongHH, ChattopadhyayP, ShekunovBY. Particle engineering for pulmonary drug delivery. Pharm. Res.24(3), 411–437 (2007).
  • Dailey LA , SchmehlT, GesslerTet al. Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Control. Release 86(1), 131–144 (2003).
  • Shrewsbury SB , BoscoAP, UsterPS. Pharmacokinetics of a novel submicron budesonide dispersion for nebulized delivery in asthma. Int. J. Pharm.365(1–2), 12–17 (2009).
  • Pandey R , SharmaA, ZahoorA, SharmaS, Khuller Gk, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug-delivery system for experimental tuberculosis. J. Antimicrob. Chemother.52(6), 981–986 (2003).
  • Ostrander KD , BoschHW, BondanzaDM. An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur. J. Pharm. Biopharm.48(3), 207–215 (1999).
  • Rance RW . Studies of the factors controlling the action of hair sprays: III. The influence of particle velocity and diameter on the capture of particles by arrays of hair fiber. J. Soc. Cosm. Chem.25, 545–561 (1974).
  • Timsina MP , MartinGP, MarriottC, GandertonD, YianneskiM. Drug delivery to the respiratory tract using dry powder inhalers. Int. J. Pharm.101, 1–13 (1994).
  • Crompton GK . Dry powder inhalers: advantages and limitations. J. Aerosol Med.4(3), 151–156 (1991).
  • Finlay WH . The Mechanics of Inhaled Pharmaceutical Aerosols: an Introduction. Academic Press, London, UK (2001).
  • Atkins PJ . Dry powder inhalers: an overview. Respir. Care50(10), 1304–1312 (2005).
  • Vidgren MT , KarkkainenA, KarjalainenP, NuutinenJ, ParonenTP. In vitro and in vivo deposition of drug particles inhaled from pressurised aerosol and dry powder inhaler. Drug Dev. Ind. Pharm.14, 2649–2665 (1988).
  • Edwards DA , HanesJ, CaponettiGet al. Large porous particles for pulmonary drug delivery. Science 276(5320), 1868–1871 (1997).
  • Sung JC , PulliamBL, EdwardsDA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol.25(12), 563–570 (2007).
  • Cheow WS , ChangMW, HadinotoK. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm. Res.27(8), 1597–1609 (2010).
  • Suk JS , LaiSK, BoylanNJ, DawsonMR, BoyleMP, HanesJ. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine (Lond)6(2), 365–375 (2011).
  • Roa WH , AzarmiS, Al-HallakMH, FinlayWH, MaglioccoAM, LobenbergR. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release150(1), 49–55 (2011).
  • Takashima Y , SaitoR, NakajimaAet al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int. J. Pharm. 343(1–2), 262–269 (2007).
  • Sharma A , SharmaS, KhullerGK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother.54(4), 761–766 (2004).
  • Davda J , LabhasetwarV. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm.233(1–2), 51–59 (2002).
  • Al-Hallak MH , SarfrazMK, AzarmiS, KohanMH, RoaWH, LobenbergR. Microcalorimetric method to assess phagocytosis: macrophage–nanoparticle interactions. AAPS J.13(1), 20–29 (2010).
  • Muttil P , PregoC, Garcia-ContrerasLet al. Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J. 12(3), 330–337 (2010).
  • Muttil P , PulliamB, Garcia-ContrerasLet al. Pulmonary immunization of guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J. 12(4), 699–707 (2010).
  • Sung J c, Padilla DJ, Garcia-Contreras L et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm. Res.26(8), 1847–1855 (2009).
  • Bruinenberg P , BlanchardJD, CipollaD, DaytonF, MudumbaS, GondaI. Inhaled liposomal ciprofloxacin: once a day management of respiratory infections. Respiratory Drug Delivery1, 73–82 (2010).
  • Cipolla D , RedelmeierT, EastmanS, BruinenbergP, GondaI. Liposomes, niosomes and proniosomes – a critical update of their (commercial) development as inhaled products. Respiratory Drug Delivery1, 41–54 (2011).
  • Carvalho TC , PetersJI, WilliamsRO 3rd. Influence of particle size on regional lung deposition – what evidence is there? Int. J. Pharm.406(1–2), 1–10 (2011).
  • Tsapis N , BennettD, JacksonB, WeitzDA, EdwardsDA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl Acad. Sci. USA99(19), 12001–12005 (2002).
  • Kabbaj M , PhillipsNC. Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J. Drug Target9(5), 317–328 (2001).
  • Pilcer G , AmighiK. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm.392(1–2), 1–19 (2010).
  • Hinds WC . Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. Wiley-Interscience, NY, USA (1999).
  • Kawakami K , SumitaniC, YoshihashiY, YonemochiE, TeradaK. Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles. Int. J. Pharm.390(2), 250–259 (2010).
  • Kho K , CheowWS, LieRH, HadinotoK. Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled anti-biofilm therapy. Powder Technol.203(3), 432–439 (2010).
  • Hadinoto K , PhanapavudhikulP, KewuZ, TanBHR. Novel formulation of large hollow nanoparticles aggregates as potential carriers in inhaled delivery of nanoparticulate drugs. Ind. Eng. Chem. Res.45, 3697–3706 (2006).
  • Cheow WS , LiS, HadinotoK. Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem. Eng. Res. Design88, 673–685 (2010).
  • Hadinoto K , PhanapavudhikulP, KewuZ, TanRB. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int. J. Pharm.333(1–2), 187–198 (2007).
  • Kho K , HadinotoK. Aqueous re-dispersibility characterization of spray-dried hollow spherical silica nano-aggregates. Powder Tech.198, 354–363 (2010).
  • Hadinoto K , CheowWS. Hollow spherical nanoparticulate aggregates as potential ultrasound contrast agent: shell thickness characterization. Drug. Dev. Ind. Pharm.35(10), 1167–1179 (2009).
  • Kho K , HadinotoK. Effects of excipient formulation on the morphology and aqueous re-dispersibility of dry-powder silica nano-aggregates. Colloids Surf. A Physicochem. Eng. Aspects359, 71–81 (2010).
  • Tomoda K , OhkoshiT, NakajimaT, MakinoK. Preparation and properties of inhalable nanocomposite particles: effects of the size, weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles. Colloids Surf. B Biointerfaces64(1), 70–76 (2008).
  • Tomoda K , OhkoshiT, KawaiY, NishiwakiM, NakajimaT, MakinoK. Preparation and properties of inhalable nanocomposite particles: effects of the temperature at a spray-dryer inlet upon the properties of particles. Colloids Surf. B Biointerfaces61(2), 138–144 (2008).
  • Yamamoto H , HoshinaW, KurashimaHet al. Engineering of poly(DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system. Advanced Powder Technol. 18(2), 215–228 (2007).
  • Jensen DM , CunD, MaltesenMJ, FrokjaerS, NielsenHM, FogedC. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J. Control. Release142(1), 138–145 (2009).
  • Lebhardt T , RoeslerS, UusitaloHP, KisselT. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur. J. Pharm. Biopharm.78(1), 90–96 (2011).
  • Wang ZL , FinlayWH, PepplerMS, SweeneyLG. Powder formation by atmospheric spray-freeze-drying. Powder Technol.170(1), 45–52 (2006).
  • Cheow WS , NgML, KhoK, HadinotoK. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int. J. Pharm.404(1–2), 289–300 (2010).
  • El-Gendy N , GormanEM, MunsonEJ, BerklandC. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J. Pharm. Sci.98(8), 2731–2746 (2009).
  • El-Gendy N , DesaiV, BerklandC. Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. J. Pharm. Innov.5, 79–86 (2010).
  • El-Gendy N , BerklandC. Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm. Res.26(7), 1752–1763 (2009).
  • El-Gendy N , Aillon Kl, Berkland C. Dry powdered aerosols of diatrizoic acid nanoparticle agglomerates as a lung contrast agent. Int. J. Pharm.391(1–2), 305–312 (2010).
  • Plumley C , GormanEM, El-GendyN, BybeeCR, MunsonEJ, BerklandC. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int. J. Pharm.369(1–2), 136–143 (2009).
  • Aillon KL , El-GendyN, DennisC, NorenbergJP, McdonaldJ, BerklandC. Iodinated NanoClusters as an inhaled computed tomography contrast agent for lung visualization. Mol. Pharm.7(4), 1274–1282 (2010).
  • Tomoda K , OhkoshiT, HirotaKet al. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf. B Biointerfaces 71(2), 177–182 (2009).
  • Aillon KL , XieY, El-GendyN, BerklandCJ, ForrestML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev.61(6), 457–466 (2009).
  • Mizoe T , OzekiT, OkadaH. Preparation of drug nanoparticle-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms. J. Control. Release122(1), 10–15 (2007).
  • Sham JO , ZhangY, FinlayWH, RoaWH, LobenbergR. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm.269(2), 457–467 (2004).
  • Iskandar F , GradonL, OkuyamaK. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J. Colloid Interface Sci.265(2), 296–303 (2003).
  • Grenha A , SeijoB, Remunan-LopezC. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J. Pharm. Sci.25(4–5), 427–437 (2005).
  • Grenha A , SeijoB, SerraC, Remunan-LopezC. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules8(7), 2072–2079 (2007).
  • Li X , GuoQ, ZhengXet al. Preparation of honokiol-loaded chitosan microparticles via spray-drying method intended for pulmonary delivery. Drug Deliv. 16(3), 160–166 (2009).
  • Kaye RS , PurewalTS, AlparHO. Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J. Pharm. Sci.98(11), 4055–4068 (2009).
  • Ohashi K , KabasawaT, OzekiT, OkadaH. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control. Release135(1), 19–24 (2009).
  • El-Sherbiny IM , SmythHD. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int. J. Pharm.395(1–2), 132–141 (2010).
  • Azarmi S , LobenbergR, RoaWH, TaiS, FinlayWH. Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev. Ind. Pharm.34(9), 943–947 (2008).
  • Niwa T , ShimabaraH, KondoM, DanjoK. Design of porous microparticles with single-micron size by novel spray freeze-drying technique using four-fluid nozzle. Int. J. Pharm.382(1–2), 88–97 (2009).
  • Schiffter H , CondliffeJ, VonhoffS. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. J. R. Soc. Interface7(4), 483–500 (2010).
  • Abdelwahed W , DegobertG, FessiH. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int. J. Pharm.309(1–2), 178–188 (2006).
  • Abdelwahed W , DegobertG, StainmesseS, FessiH. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Deliv. Rev.58(15), 1688–1713 (2006).
  • Arnold MM , GormanEM, SchieberLJ, MunsonEJ, BerklandC. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J. Control. Release121(1–2), 100–109 (2007).
  • Ely L , RoaW, Finlay Wh, Lobenberg R. Effervescent dry powder for respiratory drug delivery. Eur. J. Pharm. Biopharm.65(3), 346–353 (2007).
  • Al-Hallak MH , AzarmiS, SunCet al. Pulmonary toxicity of polysorbate-80-coated inhalable nanoparticles; in vitro and in vivo evaluation. AAPS J. 12(3), 294–299 (2010).
  • Li YZ , SunX, GongT, LiuJ, ZuoJ, ZhangZR. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid–lipid nanoparticles. Pharm. Res.27(9), 1977–1986 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.