172
Views
2
CrossRef citations to date
0
Altmetric
Review

Novel Dry Powder Inhaler particle-dispersion Systems

, , , , &
Pages 1295-1311 | Published online: 13 Oct 2011

Bibliography

  • Smyth HD . The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev.55(7), 807–828 (2003).
  • Smyth HD , LeachCL. Alternative propellant aerosol delivery systems. Crit. Rev. Ther. Drug Carrier Syst.22(6), 493–534 (2005).
  • Newman S , ClarkeS. Therapeutic aerosols 1 – physical and practical considerations. Thorax38(12), 881 (1983).
  • Byron P . Some future perspectives for unit dose inhalation aerosols. Drug Dev. Ind. Pharm.12(7), 993–1015 (1986).
  • Krupp H . Particle adhesion, theory and experiment. Advan. Colloid Interface Sci.1, 111–239, (1967).
  • Finlay WH . The Mechanics of Inhaled Pharmaceutical Aerosols: an Introduction. Academic Press, Waltham, MA, USA (2001).
  • Butt HJ , KapplM. Surface and Interfacial Forces. Wiley-VCH, Weinheim, Germany (2010).
  • Cassidy OE , CarterPA, RowleyG, MerrifieldDR. Triboelectrification of spray dried lactose prepared from different feedstock concentrations. J. Pharm. Pharmacol.52(1), 13–17 (2000).
  • Hertz H . Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik (Crelles Journal)1882(92), 156–171 (2011).
  • Derjaguin B . Untersuchungen ueber die reibung und adhaesion, IV. Kolloid-Zeitschrift69(2), 155–164 (1934).
  • Johnson K , KendallK, RobertsA. Surface energy and the contact of elastic solids. Proc. Royal Soc. London. A. Math. Phys. Sci.324(1558), 301 (1971).
  • Derjaguin B , MullerV, ToporovYP. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci.53(2), 314–326 (1975).
  • Maugis D . Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci.150(1), 243–269 (1992).
  • Rabinovich YI , AdlerJJ, AtaA, SinghRK, MoudgilBM. Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J. Colloid Interface Sci.232(1), 10–16 (2000).
  • Rabinovich YI , AdlerJJ, AtaA, SinghRK, MoudgilBM. Adhesion between nanoscale rough surfaces: II. Measurement and comparison with theory. J. Colloid Interface Sci.232(1), 17–24 (2000).
  • Dunbar C , HickeyA, HolznerP. Dispersion and characterization of pharmaceutical dry-powder aerosols. Kona16, 7–45 (1998).
  • Podczeck F , NewtonJM. Development of an ultracentrifuge technique to determine the adhesion and friction properties between particles and surfaces. J. Pharm. Sci.84(9), 1067–1071 (1995).
  • Podczeck F , NewtonJ, JamesM. The adhesion force of micronized Salmeterol Xinafoate particles to pharmaceutically relevant surface materials. J. Phys. D Appl. Phys.29, 1878 (1996).
  • Podczeck F , NewtonJM, JamesMB. Assessment of adhesion and autoadhesion forces between particles and surfaces. J. Adhesion Sci. Technol.8(12), 1459–1472 (1994).
  • Podczeck F , NewtonJM, JamesMB. Influence of relative humidity of storage air on the adhesion and autoadhesion of micronized particles to particulate and compacted powder surfaces 1. J. Colloid Interface Sci.187(2), 484–491 (1997).
  • Podczeck F . The relationship between particulate properties of carrier materials and the adhesion force of drug particles in interactive powder mixtures. J. Adhesion Sci. Technol.11(8), 1089–1104 (1997).
  • Podczeck F . Assessment of the mode of adherence and the deformation characteristics of micronized particles adhering to various surfaces. Int. J. Pharm.145(1–2), 65–76 (1996).
  • Selvam P , MarekS, TrumanCR, McnairD, SmythHDC. Micronized drug adhesion and detachment from surfaces: effect of loading conditions. Aerosol Sci. Technol.45(1), 81–87 (2011).
  • Louey MD , MulvaneyP, StewartPJ. Characterisation of adhesional properties of lactose carriers using atomic force microscopy. J. Pharm. Biomed. Anal.25(3–4), 559–567 (2001).
  • Hooton JC , JonesMD, HarrisH, ShurJ, PriceR. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive–adhesive force balance approach. Drug Devel. Ind. Pharm.34(9), 974–983 (2008).
  • Hooton JC , JonesMD, PriceR. Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive–adhesive force balance approach. J. Pharm. Sci.95(6), 1288–1297 (2006).
  • Begat P , Morton DaV, Staniforth JN, Price R. The cohesive–adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm. Res.21(9), 1591–1597 (2004).
  • De Boer A , HagedoornP, GjaltemaD, GoedeJ, FrijlinkH. Air classifier technology (ACT) in dry powder inhalation: part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures. Int. J. Pharm.260(2), 187–200 (2003).
  • Nichols S , WynnE. New Approaches to Optimising Dispersion in Dry Powder Inhaler-dispersion Force Mapping and Adhesion Measurements. DHI Publishing, River Grove, IL, USA (2008).
  • Selvam P , McnairD, TrumanR, SmythHDC. A novel dry powder inhaler: effect of device design on dispersion performance. Int. J. Pharm. (2010).
  • Marek SR , DonovanMJ, SmythHDC. Effects of mild processing pressures on the performance of dry powder inhaler formulations for inhalation therapy (1): budesonide and lactose. Eur. J. Pharm. Biopharm.78(1), 97–106 (2010).
  • Frijlink HW , De Boer AH. Trends in the technology-driven development of new inhalation devices. Drug Discov. Today Technol.2(1), 47–57 (2005).
  • Coates MS , ChanHK, FletcherDF, RaperJA. Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res.22(9), 1445–1453 (2005).
  • Chew NY , ChanHK. In vitro aerosol performance and dose uniformity between the foradile aerolizer and the oxis Turbuhaler. J. Aerosol Med.14(4), 495–501 (2001).
  • Weuthen T , RoederS, BrandP, MullingerB, ScheuchG. In vitro testing of two formoterol dry powder inhalers at different flow rates. J. Aerosol Med.15(3), 297–303 (2002).
  • Pilcer G , WauthozN, AmighiK. Lactose characteristics and the generation of the aerosol. Adv. Drug Deliv. Rev. (2011) (Epub ahead of print).
  • Kamin WE , GenzT, RoederSet al. Mass output and particle size distribution of glucocorticosteroids emitted from different inhalation devices depending on various inspiratory parameters. J. Aerosol Med. 15(1), 65–73 (2002).
  • Palander A , MattilaT, KarhuM, MuttonenE. In vitro comparison of three salbutamol-containing multidose dry powder inhalers: Buventol Easyhaler, Inspiryl Turbuhaler and Ventoline Diskus. Clin. Drug Invest.20(1), 25–33 (2000).
  • Chodosh S , FlandersJS, KestenS, SerbyCW, HochrainerD, WitekTJ Jr. Effective delivery of particles with the HandiHaler dry powder inhalation system over a range of chronic obstructive pulmonary disease severity. J. Aerosol Med.14(3), 309–315 (2001).
  • Smith KJ , ChanHK, BrownKF. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers. J. Aerosol Med.11(4), 231–245 (1998).
  • Dehaan W , FinlayW. Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci.35(3), 309–331 (2004).
  • Coates MS , ChanHK, FletcherDF, ChiouH. Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm. Res.24(8), 1450–1456 (2007).
  • Gupta V , GuptaSK. Fluid Mechanics and its Applications. Wiley Eastern, New Delhi, India (1984).
  • Coates MS , FletcherDF, ChanHK, RaperJA. The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res.22(6), 923–932 (2005).
  • Bell J , HartleyP, CoxJ. Dry powder aerosols I: a new powder inhalation device. J. Pharm. Sci.60(10), 1559–1564 (1971).
  • Newman SP , BusseWW. Evolution of dry powder inhaler design, formulation, and performance. Respir. Med.96(5), 293–304 (2002).
  • Borgstrom L . Deposition patterns with Turbuhaler. J. Aerosol Med.7(Suppl. 1), S49–S53 (1994).
  • Auty RM , BrownK, NealeMG, SnashallPD. Respiratory tract deposition of sodium cromoglycate is highly dependent upon technique of inhalation using the Spinhaler. Br. J. Dis. Chest81, 371–380 (1987).
  • Islam N , GladkiE. Dry powder inhalers (DPIs) – a review of device reliability and innovation. Int. J. Pharm.360(1–2), 1–11 (2008).
  • Prime D , AtkinsPJ, SlaterA, SumbyB. Review of dry powder inhalers. Adv. Drug Deliv. Rev.26(1), 51–58 (1997).
  • Wetterlin K . Turbuhaler: a new powder inhaler for administration of drugs to the airways. Pharm. Res.5(8), 506–508 (1988).
  • Smith IJ , Parry-BillingsM. The inhalers of the future? A review of dry powder devices on the market today. Pulm. Pharmacol. Ther.16(2), 79–95 (2003).
  • Steckel H , MullerBW. In vitro evaluation of dry powder inhalers I: drug deposition of commonly used devices. 154(1), 19–29 (1997).
  • Lamb E . Top 200 drugs of 2008. Pharmacy Times5, 26–28 (2009).
  • Muchmore DB , SilvermanB, PeñaADL, TobianJ. The AIR® inhaled insulin system: system components and pharmacokinetic/glucodynamic data. Diabetes Technol. Ther.9(Suppl. 1), 41–47 (2007).
  • Delong M , WrightJ, DawsonM, MeyerT, SommererK, DunbarC. Dose delivery characteristics of the AIR® pulmonary delivery system over a range of inspiratory flow rates. J. Aerosol Med.18(4), 452–459 (2005).
  • Vehring R . Pharmaceutical particle engineering via spray drying. Pharm. Res.25(5), 999–1022 (2008).
  • Weers JG , TararaTE, ClarkAR. Design of fine particles for pulmonary drug delivery. Expert Opin. Drug Deliv.4(3), 297–313 (2007).
  • Brambilla G , CocconiD, ArmanniA, SmithS, LyeE, BurgeS. Designing a novel dry powder inhaler: the NEXT™ DPI (part 1). Resp. Drug Deliv.2, 553–555 (2006).
  • Needham M , FradleyG, CocksP. Investigating the efficiency of reverse cyclone technology for DPI drug delivery. Resp. Drug Deliv.2, 369–372 (2010).
  • Smith IJ , Parry-BillingsM. The inhalers of the future? A review of dry powder devices on the market today. Pulm. Pharmacol. Ther.16(2), 79–95 (2003).
  • Bisgaard H , KlugB, SumbyB, BurnellP. Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma. Eur. Resp. J.11(5), 1111 (1998).
  • Watling C , ElliottJ, CameronR. Entrainment of lactose inhalation powders: a study using laser diffraction. Eur. J. Pharm. Sci.40(4), 352–358 (2010).
  • De Boer AH , HagedoornP, GjaltemaD, GoedeJ, FrijlinkHW. Air classifier technology (ACT) in dry powder inhalation. Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures. Int. J. Pharm.260(2), 187–200 (2003).
  • De Boer A , HagedoornP, GjaltemaD, GoedeJ, FrijlinkH. Air classifier technology (ACT) in dry powder inhalation: part 3. Design and development of an air classifier family for the Novolizer® multi-dose dry powder inhaler. Int. J. Pharm.310(1–2), 72–80 (2006).
  • De Boer A , HagedoornP, GjaltemaD, GoedeJ, FrijlinkH. Air classifier technology (ACT) in dry powder inhalation: part 4. Performance of air classifier technology in the Novolizer® multi-dose dry powder inhaler. Int. J. Pharm.310(1–2), 81–89 (2006).
  • Munzel U , MarschallK, FyrnysB, WedelM. Variability of fine particle dose and lung deposition of budesonide delivered through two multidose dry powder inhalers. Curr. Med. Res. Opin.21(6), 827–833 (2005).
  • Gardner D , CasperB. Development of the Acu-Breath™ dry powder inhaler. Drug Deliv. Technol.5(4), 30–39 (2005).
  • Donovan M , SmythHDC. Widening the lens: re-evaluating the influence of size and morphology of DPI carrier particle performance. Drug Deliv. Lung43–46 (2011).
  • Steckel H , MullerBW. In vitro evaluation of dry powder inhalers I: drug deposition of commonly used devices. Int. J. Pharm.154(1), 19–29 (1997).
  • Srichana T , MartinG, MarriottC. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur. J. Pharm. Sci.7(1), 73–80 (1998).
  • De Boer A , GjaltemaD, HagedoornP. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers part 2: effect of peak flow rate (PIFR) and inspiration time on the in vitro drug release from three different types of commercial dry powder inhalers. Int. J. Pharm.138(1), 45–56 (1996).
  • Ganderton D , KassemNM. Dry powder inhalers. Adv. Pharm. Sci.6, 165–191 (1992).
  • Zeng XM , MartinGP, TeeSK, MarriottC. The role of fine particle lactose on the dispersion and deaggregation of salbutamol sulphate in an air stream in vitro. Int. J. Pharm.176(1), 99–110 (1998).
  • Lucas P , AndersonK, StaniforthJN. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm. Res.15(4), 562–569 (1998).
  • Son YJ , McconvilleJT. Advancements in dry powder delivery to the lung. Drug Dev. Ind. Pharm.34(9), 948–959 (2008).
  • Hickey AJ . Next Generation Dry Powder Inhalation Delivery Systems. Informa Healthcare USA Inc., NY, USA. 445–460 (2007).
  • Weers JG , BellJ, ChanHKet al. Pulmonary formulations: what remains to be done? J. Aerosol Med. Pulm. Drug Deliv. 23(S2), 5–23 (2010).
  • Tiddens HA , GellerDE, ChallonerPet al. Effect of dry powder inhaler resistance on the inspiratory flow rates and volumes of cystic fibrosis patients of six years and older. J. Aerosol Med. 19(4), 456–465 (2006).
  • Clark A , HollingworthA. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers – implications for in vitro testing. J. Aerosol Med.6(2), 99–110 (1993).
  • Agertoft L , PedersenS, NikanderK. Drug delivery from the Turbuhaler and Nebuhaler pressurized metered dose inhaler to various age groups of children with asthma. J. Aerosol Med.12(3), 161–169 (1999).
  • Schultz R , MillerN, SmithD, RossD. Powder aerosols with auxiliary means of dispersion. J. Biopharm. Sci3, 115–121 (1992).
  • Hill M . Characteristics of an active multiple dose dry powder inhaler. Resp. Drug Deliv.109, 116 (1994).
  • Crowder TM . 2001: an odyssey in inhaler formulation and design. Pharm. Technol.25(7), 99–113 (2001).
  • Tobyn M , StaniforthJN, MortonD, HarmerQ, NewtonME. Active and intelligent inhaler device development. Int. J. Pharm.277(1–2), 31–37 (2004).
  • White S , BennettDB, CheuSet al. EXUBERA®: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol. Ther. 7(6), 896–906 (2005).
  • Harper NJ , GrayS, GrootJDet al. The design and performance of the Exubera® pulmonary insulin delivery system. Diabetes Technol. Ther. 9(S1), 16–27 (2007).
  • Mack GS . Pfizer dumps Exubera. Nat. Biotechnol.25(12), 1331–1332 (2007).
  • Weintraub A . Pfizer‘s Exubera flop. BusinessWeek: Technology, 18 October 2007.
  • Grosset KA . Inhaled apomorphine (VR040) for “off” periods in Parkinson‘s disease. Presented at: The Movement Disorder Society‘s 15th International Congress of Parkinson‘s Disease and Movement Disorders. Toronto, ON, Canada, 5–9 June 2011.
  • Keating GM , FauldsD. Airmax: a multi-dose dry powder inhaler. Drugs62(13), 1887–1895 (2002).
  • Zeng XM , O‘LearyD, PhelanM, JonesS, ColledgeJ. Delivery of salbutamol and of budesonide from a novel multi-dose inhaler Airmax™. Respir. Med.96(6), 404–411 (2002).
  • Nelson H , KempJP, BielerS, VaughanLM, HillMR. Comparative efficacy and safety of albuterol sulfate Spiros inhaler and albuterol metered-dose inhaler in asthma. Chest115(2), 329–335 (1999).
  • Ahrens RC , HendelesL, ClarkeWRet al. Therapeutic equivalence of Spiros dry powder inhaler and Ventolin metered dose inhaler. A bioassay using methacholine. Am. J. Respir. Crit. Care Med. 160(4), 1238–1243 (1999).
  • Newman S , BusseW. Evolution of dry powder inhaler design, formulation, and performance. Respir. Med.96(5), 293–304 (2002).
  • Schulte M , OsseiranK, BetzRet al. Handling of and preferences for available dry powder inhaler systems by patients with asthma and COPD. J. Aerosol Med. Pulm. Drug Deliv. 21(4), 321–328 (2008).
  • Sitz R . Current innovations in dry powder inhalers. Orally inhaled and nasal drug products: innovations from major delivery system developers. ONdrugDelivery10–12 (2010).
  • Brown B , RasmussenJ, BeckerD, FriendD. A piezo-electronic inhaler for local & systemic applications. Drug Deliv. Technol.4, 90–93 (2004).
  • Boekestein VJ , HickeyAJ, CrowderTM. Uniform and reproducible delivery of albuterol from a variety of lactose powder blends using the Oriel active dispersion platform. Drug Deliv. Lungs XIII107–110 (2002).
  • Geller DE , WeersJ, HeuerdingS. Development of an inhaled dry-powder formulation of tobramycin using Pulmosphere™ technology. J. Aerosol Med. Pulm. Drug Deliv.24(4), 175–185 (2011).
  • Smith IJ , BellJ, BowmanN, EverardM, SteinS, WeersJG. Inhaler devices: what remains to be done? J. Aerosol Med. Pulm. Drug Deliv.23(Suppl. 2), 25–37 (2010).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.