163
Views
0
CrossRef citations to date
0
Altmetric
Review

Trans-scleral Delivery of Macromolecules

, , &
Pages 1331-1349 | Published online: 13 Oct 2011

Bibliography

  • Resnikoff S , PascoliniD, Etya‘aleDet al. Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844–851 (2004).
  • Sampat KM , GargSJ. Complications of intravitreal injections. Curr. Opin. Ophthalmol.21, 178–183 (2010).
  • Jiang C , MooreMJ, ZhangX, KlassenH, LangerR, YoungM. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol. Vis.13, 1783–1792 (2007).
  • Bourges JL , BloquelC. Thomas A et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv. Drug Delivery Rev.58, 1182–1202 (2006).
  • Choonara YE , PillayV, DanckwertsMP, CarmichaelTR, du Toit LC. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J. Pharm. Sci.99, 2219–2239 (2010).
  • Ranta VP , UrttiA. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv. Drug Deliv. Rev.58, 1164–1181 (2006).
  • Raghava S , HammondM, KompellaUB. Periocular routes for retinal drug delivery. Expert Opin. Drug Deliv.1, 99–114 (2004).
  • Thrimawithana TR , YoungS, BuntCR, GreenC, AlanyRG. Drug delivery to the posterior segment of the eye. Drug Discov. Today16, 270–277 (2011).
  • Del Amo EM , UrttiA. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today13, 135–143 (2008).
  • Eljarrat-Binstock E , Pe‘erJ, DombAJ. New techniques for drug delivery to the posterior eye segment. Pharm. Res.27, 530–543 (2010).
  • Gaudana R , AnanthulaHK, ParenkyA, MitraAK. Ocular drug delivery. AAPS J.12, 348–360 (2010).
  • Kuppermann BD , LoewensteinA. Drug delivery to the posterior segment of the eye. Dev. Ophthalmol.47, 59–72 (2010).
  • Kearns VR , WilliamsRL. Drug delivery systems for the eye. Expert Rev. Med. Devices6, 277–290 (2009).
  • Barocas VH , BalachandranRK. Sustained transscleral drug delivery. Expert Opin. Drug Deliv.5, 1–10 (2008).
  • Kim SH , LutzRJ, WangNS, RobinsonMR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res.39, 244–254 (2007).
  • Anderson OA , BainbridgeJW, ShimaDT. Delivery of anti-angiogenic molecular therapies for retinal disease. Drug Discov. Today15, 272–282 (2010).
  • Lambiase A , AloeL, CentofantiMet al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc. Natl Acad. Sci. USA 106, 13469–13474 (2009).
  • Zhang K , HopkinsJJ, HeierJSet al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc. Natl Acad. Sci. USA 108, 6241–6245 (2011).
  • El Sanharawi M , KowalczukL, TouchardE, OmriS, de Kozak Y, Behar-Cohen F. Protein delivery for retinal diseases: from basic considerations to clinical applications. Prog. Retinal Eye Res.29, 443–465 (2010).
  • Fattal E , BochotA. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv. Drug Deliv. Rev.58, 1203–1223 (2006).
  • Mandel M . Some Properties of Polyelectrolyte Solutions and the Scaling Approach. Marcel Dekker, NY, USA (1993).
  • Wang L , YuH. Chain conformation of linear polyelectrolyte in salt solutions: sodium poly(styrene sulfonate) in potassium chloride and sodium chloride solutions. Macromolecules21, 3498–3501 (1988).
  • Boswell CA , TesarDB, MukhyalaK, TheilFP, FielderPJ, KhawliLA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug. Chem.21(12), 2153–2163 (2010).
  • Hayakawa E , ChienDS, InagakiK, YamamotoA, WangW, LeeVH. Conjunctival penetration of insulin and peptide drugs in the albino rabbit. Pharm. Res.9, 769–775 (1992).
  • Hosoya K , LeeVH, KimKJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur. J. Pharm. Biopharm.60, 227–240 (2005).
  • Sasaki H , YamamuraK, MukaiTet al. Modification of ocular permeability of peptide drugs by absorption promoters. Biol. Pharm. Bull. 23, 1524–1527 (2000).
  • Sasaki H , YamamuraK, TeiC, NishidaK, NakamuraJ. Ocular permeability of FITC-dextran with absorption promoter for ocular delivery of peptide drug. J. Drug Target.3, 129–135 (1995).
  • Horibe Y , HosoyaK, KimKJ, OgisoT, LeeVH. Polar solute transport across the pigmented rabbit conjunctiva: size dependence and the influence of 8-bromo cyclic adenosine monophosphate. Pharm. Res.14, 1246–1251 (1997).
  • Nomoto H , ShiragaF, KunoNet al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest. Ophthalmol. Vis. Sci. 50, 4807–4813 (2009).
  • Hagigit T , AbdulrazikM, OrucovFet al. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release 145, 297–305 (2010).
  • Furrer E , BerdugoM, StellaCet al. Pharmacokinetics and posterior segment biodistribution of ESBA105, an anti-TNF-α single-chain antibody, upon topical administration to the rabbit eye. Invest. Ophthalmol. Vis. Sci. 50, 771–778 (2009).
  • Ottiger M , ThielMA, FeigeU, LichtlenP, UrechDM. Efficient intraocular penetration of topical anti-TNF-α single-chain antibody (ESBA105) to anterior and posterior segment without penetration enhancer. Invest. Ophthalmol. Vis. Sci.50, 779–786 (2009).
  • Ahmed I , PattonTF. Importance of the noncorneal absorption route in topical ophthalmic drug deliveryInvest. Ophthalmol. Vis. Sci.26, 584–587 (1985).
  • Kim TW , LindseyJD, AiharaM, AnthonyTL, WeinrebRN. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest. Ophthalmol. Vis. Sci.43, 1809–1816 (2002).
  • Li J , WasmuthS, BauerD, BaehlerH, HennigM, HeiligenhausA. Subconjunctival antisense oligonucleotides targeting TNF-α influence immunopathology and viral replication in murine HSV-1 retinitis. Graefes Arch. Clin. Exp. Ophthalmol.246, 1265–1273 (2008).
  • Gehlbach P , DemetriadesAM, YamamotoSet al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 10, 637–646 (2003).
  • Kim SH , CsakyKG, WangNS, LutzRJ. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm. Res.25, 512–520 (2008).
  • Edwards A , PrausnitzMR. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J.44, 214–225 (1998).
  • Boubriak OA , UrbanJP, AkhtarS, MeekKM, BronAJ. The effect of hydration and matrix composition on solute diffusion in rabbit sclera. Exp. Eye Res.71, 503–514 (2000).
  • Maurice DM , PolgarJ. Diffusion across the sclera. Exp. Eye Res.25, 577–582 (1977).
  • Olsen TW , EdelhauserHF, LimJI, GeroskiDH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest. Ophthalmol. Vis. Sci.36, 1893–1903 (1995).
  • Ambati J , CanakisCS, MillerJWet al. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41, 1181–1185 (2000).
  • Kadam RS , CheruvuNP, EdelhauserHF, KompellaUB. Sclera–choroid–RPE transport of eight β-blockers in human, bovine, porcine, rabbit, and rat models. Invest. Ophthalmol. Vis. Sci.52(8), 5387–5399 (2011).
  • Nicoli S , FerrariG, QuartaMet al. Porcine sclera as a model of human sclera for in vitro transport experiments: histology, SEM, and comparative permeability. Mol. Vis. 15, 259–266 (2009).
  • Prausnitz MR , NoonanJS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci.87, 1479–1488 (1998).
  • Macchioni A , CiancaleoniG, ZuccacciaC, ZuccacciaD. Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem. Soc. Rev.37, 479–489 (2008).
  • Wen H , HaoJ, LiSK. Influence of permeant lipophilicity on permeation across human sclera. Pharm. Res.27, 2446–2456 (2010).
  • Kadam RS , KompellaUB. Influence of lipophilicity on drug partitioning into sclera, choroid–retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J. Pharmacol. Exp. Ther.332, 1107–1120 (2010).
  • Thakur A , KadamRS, KompellaUB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab. Dispos.39, 771–781 (2011).
  • Cheruvu NP , KompellaUB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid–Bruch‘s layer. Invest. Ophthalmol. Vis. Sci.47, 4513–4522 (2006).
  • Lin CW , WangY, ChallaP, EpsteinDL, YuanF. Transscleral diffusion of ethacrynic acid and sodium fluorescein. Mol. Vis.13, 243–251 (2007).
  • Ranta VP , MannermaaE, LummepuroKet al. Barrier analysis of periocular drug delivery to the posterior segment. J. Control. Release 148(1), 42–48 (2010).
  • Gyenge CC , TenstadO, WiigH. In vivo determination of steric and electrostatic exclusion of albumin in rat skin and skeletal muscle. J. Physiol.552, 907–916 (2003).
  • Taylor AE , ParkerJC. Intersitial exluded volumes: the effect of charge. J. Physiol.553, 333 (2003).
  • Carrasquillo KG , RickerJA, RigasIK, MillerJW, GragoudasES, AdamisAP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest. Ophthalmol. Vis. Sci.44, 290–299 (2003).
  • Alberdi E , HydeCC, BecerraSP. Pigment epithelium-derived factor (PEDF) binds to glycosaminoglycans: analysis of the binding site. Biochemistry37, 10643–10652 (1998).
  • Waldbillig RJ , ArnoldDR, FletcherRT, ChaderGJ. Insulin and IGF-1 binding in chick sclera. Invest. Ophthalmol. Vis. Sci.31, 1015–1022 (1990).
  • Hussain AA , StaritaC, HodgettsA, MarshallJ. Macromolecular diffusion characteristics of ageing human Bruch‘s membrane: implications for age-related macular degeneration (AMD). Exp. Eye Res.90, 703–710 (2010).
  • Bernstein MH , HollenbergMJ. Fine structure of the choriocapillaris and retinal capillaries. Invest. Ophthalmol. Vis. Sci.4, 1016–1025 (1965).
  • Starita C , HussainAA, PatmoreA, MarshallJ. Localization of the site of major resistance to fluid transport in Bruch‘s membrane. Invest. Ophthalmol. Vis. Sci.38, 762–767 (1997).
  • Moore DJ , CloverGM. The effect of age on the macromolecular permeability of human Bruch‘s membrane. Invest. Ophthalmol. Vis. Sci.42, 2970–2975 (2001).
  • Pitkanen L , RantaVP, MoilanenH, UrttiA. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci.46, 641–646 (2005).
  • Pescina S , PadulaC, SantiP, NicoliS. Effect of formulation factors on the trans-scleral iontophoretic and post-iontophoretic transport of a 40 kDa dextran in-vitro. Eur. J. Pharm. Sci.42, 503–508 (2011).
  • Amrite A , PugazhenthiV, CheruvuN, KompellaU. Delivery of celecoxib for treating diseases of the eye: influence of pigment and diabetes. Expert. Opin. Drug Deliv.7, 631–645 (2010).
  • Cheruvu NP , AmriteAC, KompellaUB. Effect of eye pigmentation on transscleral drug delivery. Invest. Ophthalmol. Vis. Sci.49, 333–341 (2008).
  • Pitkanen L , RantaVP, MoilanenH, UrttiA. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid–retinal pigment epithelium. Pharm. Res.24, 2063–2070 (2007).
  • Geng J , YuanP, ShaoCet al. Bacterial melanin interacts with double-stranded DNA with high affinity and may inhibit cell metabolism in vivo. Arch. Microbiol. 192, 321–329 (2010).
  • Eckhart L , BachJ, BanJ, TschachlerE. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem. Biophys. Res. Commun.271, 726–730 (2000).
  • Chan JE , PridgenTA, CsakyKG. Episcleral clearance of sodium fluorescein from a bioerodible sub-tenon‘s implant in the rat. Exp. Eye Res.90, 501–506 (2010).
  • Robinson MR , LeeSS, KimHet al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 82, 479–487 (2006).
  • Spitznas M , RealeE. Fracture faces of fenestrations and junctions of endothelial cells in human choroidal vessels. Invest. Ophthalmol. Vis. Sci.14, 98–107 (1975).
  • Rieke ER , AmaralJ, BecerraSP, LutzRJ. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J. Ocul. Pharmacol. Ther.26, 55–64 (2010).
  • Steuer H , JaworskiA, StollD, SchlosshauerB. In vitro model of the outer blood–retina barrier. Brain Res. Brain Res. Protoc.13, 26–36 (2004).
  • Hornof M , ToropainenE, UrttiA. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm.60, 207–225 (2005).
  • Mannermaa E , ReinisaloM, RantaVPet al. Filter-cultured ARPE-19 cells as outer blood–retinal barrier model. Eur. J. Pharm. Sci. 40, 289–296 (2010).
  • Mannermaa E , VellonenKS, RyhanenTet al. Efflux protein expression in human retinal pigment epithelium cell lines. Pharm. Res. 26, 1785–1791 (2009).
  • Mannermaa E , VellonenKS, UrttiA. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev.58, 1136–1163 (2006).
  • Amaral J , FarissRN, CamposMMet al. Transscleral–RPE permeability of PEDF and ovalbumin proteins: implications for subconjunctival protein delivery. Invest. Ophthalmol. Vis. Sci. 46, 4383–4392 (2005).
  • Mac Gabhann F , DemetriadesAM, DeeringTet al. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann. Biomed. Eng. 35, 615–630 (2007).
  • Ban Y , RizzoloLJ. A culture model of development reveals multiple properties of RPE tight junctions. Mol. Vis.3, 18 (1997).
  • Anderson OA , JacksonTL, SinghJK, HussainAA, MarshallJ. Human transscleral albumin permeability and the effect of topographical location and donor age. Invest. Ophthalmol. Vis. Sci.49, 4041–4045 (2008).
  • Chiang A , HallerJA. Vitreoretinal disease in the coming decade. Curr. Opin. Ophthalmol.21, 197–202 (2010).
  • Conway BR . Recent patents on ocular drug delivery systems. Recent Pat. Drug Deliv. Formul.2, 1–8 (2008).
  • Srivastava R , PathakK. An updated patent review on ocular drug delivery systems with potential for commercial viability. Recent Pat. Drug Deliv. Formul.5, 146–162 (2011).
  • Diebold Y , CalongeM. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res.29, 596–609 (2010).
  • Bochot A , LajavardiL, CameloSet al. Potential of liposomes for the intravitreal injection of therapeutic molecules. Ann. Pharm. Fr. 69, 100–107 (2011).
  • Tamboli V , MishraGP, MitraAK. Polymeric vectors for ocular gene delivery. Therapeutic Delivery2, 523–536 (2011).
  • Kompella UB , KadamRS, LeeVH. Recent advances in ophthalmic drug delivery. Therapeutic Delivery1, 435–456 (2010).
  • Hironaka K , InokuchiY, TozukaY, ShimazawaM, HaraH, TakeuchiH. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J. Control. Release136, 247–253 (2009).
  • Tsui JY , DalgardC, Van Quill KR et al. Subconjunctival topotecan in fibrin sealant in the treatment of transgenic murine retinoblastoma. Invest. Ophthalmol. Vis. Sci.49, 490–496 (2008).
  • Simpson AE , GilbertJA, RudnickDEet al. Transscleral diffusion of carboplatin: an in vitro and in vivo study. Arch. Ophthalmol. 120, 1069–1074 (2002).
  • Van Quill KR , DioguardiPK, TongCTet al. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology 112, 1151–1158 (2005).
  • Amrite AC , KompellaUB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol.57, 1555–1563 (2005).
  • Kang Derwent JJ , MielerWF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans. Am. Ophthalmol. Soc.106, 206–213; discussion 213–214 (2008).
  • Misra GP , SinghRS, AlemanTS, JacobsonSG, GardnerTW, LoweTL. Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials30, 6541–6547 (2009).
  • Ambati J , GragoudasES, MillerJWet al. Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci. 41, 1186–1191 (2000).
  • Kawashima T , NagaiN, KajiHet al. A scalable controlled-release device for transscleral drug delivery to the retina. Biomaterials 32, 1950–1956 (2011).
  • Jorgensen L , NielsonHM. Delivery Technologies for Biopharmaceuticals: Peptides, Proteins, Nucleic Acids and Vaccines. John Wiley & Sons Ltd, Chichester, UK (2010).
  • Jiang J , GillHS, GhateDet al. Coated microneedles for drug delivery to the eye. Invest. Ophthalmol. Vis. Sci. 48, 4038–4043 (2007).
  • Jiang J , MooreJS, EdelhauserHF, PrausnitzMR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res.26, 395–403 (2009).
  • Patel SR , LinAS, EdelhauserHF, PrausnitzMR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res.28, 166–176 (2011).
  • Mitragotri S , KostJ. Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotechnol. Prog.16, 488–492 (2000).
  • Lavon I , KostJ. Ultrasound and transdermal drug delivery. Drug Discov. Today9, 670–676 (2004).
  • Cheung AC , YuY, TayD, WongHS, Ellis-BehnkeR, ChauY. Ultrasound-enhanced intrascleral delivery of protein. Int. J. Pharm.401, 16–24 (2010).
  • Luzardo-Alvarez A , Rodriguez-FernandezM, Blanco-MendezJ, GuyRH, Delgado-CharroMB. Iontophoretic permselectivity of mammalian skin: characterization of hairless mouse and porcine membrane models. Pharm. Res.15, 984–987 (1998).
  • Fisher GA , ParkinsonTM, SzlekMA. Ocuphor – the future of ocular drug delivery. Drug Deliv. Tech.2, 50–52 (2002).
  • Parkinson TM , FergusonE, FebbraroS, BakhtyariA, KingM, MundasadM. Tolerance of ocular iontophoresis in healthy volunteers. J. Ocul. Pharmacol. Ther.19, 145–151 (2003).
  • Vollmer DL , SzlekMA, KolbK, LloydLB, ParkinsonTM. In vivo transscleral iontophoresis of amikacin to rabbit eyes. J. Ocul. Pharmacol. Ther.18, 549–558 (2002).
  • Eljarrat-Binstock E , DombAJ, OrucovF, DaganA, Frucht-PeryJ, Pe‘erJ. In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr. Eye Res.33, 269–275 (2008).
  • Eljarrat-Binstock E , DombAJ, OrucovF, Frucht-PeryJ, Pe‘erJ. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr. Eye Res.32, 639–646 (2007).
  • Gungor S , Delgado-CharroMB, Ruiz-PerezBet al. Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J. Control. Release 147, 225–231 (2010).
  • Behar-Cohen FF , El Aouni A et al. Transscleral Coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp. Eye Res.74, 51–59 (2002).
  • Voigt M , KralingerM, KieselbachGet al. Ocular aspirin distribution: a comparison of intravenous, topical and Coulomb-controlled iontophoresis administration. Invest. Ophthalmol. Vis. Sci. 43, 3299–3306 (2002).
  • Nicoli S , FerrariG, QuartaM, MacalusoC, SantiP. In vitro transscleral iontophoresis of high molecular weight neutral compounds. Eur. J. Pharm. Sci.36, 486–492 (2009).
  • Chopra P , HaoJ, LiSK. Iontophoretic transport of charged macromolecules across human sclera. Int. J. Pharm.388, 107–113 (2010).
  • Pescina S , FerrariG, GovoniP, MacalusoCet al. In vitro permeation of bevacizumab through human sclera: effect of iontophoresis application. J. Pharm. Pharmacol.62, 1189–1194 (2010).
  • Davies JB , CiavattaVT, BoatrightJH, NickersonJM. Delivery of several forms of DNA, DNA–RNA hybrids, and dyes across human sclera by electrical fields. Mol. Vis.15, 569–578 (2003).
  • Asahara T , ShinomiyaK, NaitoT, ShiotaH. Induction of gene into the rabbit eye by iontophoresis: preliminary report. Jpn J. Ophthalmol.45, 31–39 (2001).
  • Voigt M , de Kozak Y, Halhal M, Courtois Y, Behar-Cohen F. Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis. Biochem. Biophys. Res. Commun.295, 336–341 (2002).
  • Souied EH , ReidSNM, PiriNI, LernerLE, NusinowitzS, FarberDB. Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Exp. Eye Res.87, 168–175 (2008).
  • Molokhia SA , JeongEK, HiguchiWI, LiSK. Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI. Exp. Eye Res.88, 418–425 (2009).
  • Amrite AC , EdelhauserHF, KompellaUB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest. Ophthalmol. Vis. Sci.49, 320–332 (2008).
  • Balachandran RK , BarocasVH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm. Res.25, 2685–2696 (2008).
  • Lee TW , RobinsonJR. Drug delivery to the posterior segment of the eye II: development and validation of a simple pharmacokinetic model for subconjunctival injection. J. Ocul. Pharmacol. Ther.20, 43–53 (2004).
  • Lee TW , RobinsonJR. Drug delivery to the posterior segment of the eye IV: theoretical formulation of a drug delivery system for subconjunctival injection. J. Ocul. Pharmacol. Ther.25, 29–37 (2009).
  • Mac Gabhann F , DemetriadesAM, DeeringTet al. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann. Biomed. Eng. 35, 615–630 (2007).
  • Dias CS , MitraAK. Vitreal elimination kinetics of large molecular weight FITC-labeled dextrans in albino rabbits using a novel microsampling technique. J. Pharm. Sci.89, 572–578 (2000).
  • Durairaj C , ShahJC, SenapatiS, KompellaUB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharm. Res.26, 1236–1260 (2009).
  • Cruysberg LP , NuijtsRM, GeroskiDH, GilbertJA, HendrikseF, EdelhauserHF. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds. Invest. Ophthalmol. Vis. Sci.46, 3790–3794 (2005).
  • Shuler RK Jr, Dioguardi PK, Henjy C, Nickerson JM, Cruysberg LP, Edelhauser HF. Scleral permeability of a small, single-stranded oligonucleotide. J. Ocul. Pharmacol. Ther.20, 159–168 (2004).
  • Ethier CR , JohnsonM, RubertiJ. Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng.6, 249–273 (2004).
  • Ahmed I , GokhaleRD, ShahMV, PattonTF. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J. Pharm. Sci.76, 583–586 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.