256
Views
0
CrossRef citations to date
0
Altmetric
Review

A Review on comb-shaped Amphiphilic Polymers for Hydrophobic Drug Solubilization

, &
Pages 59-79 | Published online: 19 Dec 2011

References

  • Bader H , RingsdorfH, SchmidtB. Water soluble polymers in medicine. Angew. Chem. Int. Ed. Engl.123/124, 457–485 (1984)
  • Kwon G , OkanoT. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev.21, 107–116 (1996).
  • Jagur-Grodzinski J . Biomedical application of functional polymers. React. Funct. Polym.39, 99–138 (1999).
  • Letchford K , BurtH. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm.65, 259–269 (2007).
  • Branco MC , SchneiderJP. Self-assembling materials for therapeutic delivery. Acta Biomaterialia5, 817–813 (2009).
  • Nishiyama N , KataokaK. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther.112, 630–648 (2006).
  • Darling SB . Directing the self-assembly of block copolymers. Prog. Polym. Sci.32, 1152–1204 (2007).
  • Cheng W -P, Gray AI, Tetley L et al. Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules7, 1509–1520 (2006).
  • Lapienis G . Star-shaped polymers having PEO arms. Prog. Polym. Sci.34, 852–892 (2009).
  • Biricova V , LaznickovaA. Dendrimers: analytical characterization and applications. Bioorg. Chem.37, 185–192 (2009).
  • Kwon G , KataokaK. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev.16, 295–309 (1995).
  • Yu BG , OkanoT, KataokaK, KwonG. Polymeric micelles for drug delivery: solubilisation and haemolytic activity of amphotericin B. J. Control. Release53, 131–136 (1998).
  • Riess G . Micellization of block copolymers. Prog. Polym. Sci.28, 1107–1170 (2003).
  • Nakashima K , BahadurP. Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv. Colloid Interfac.123–126, 75–96 (2006).
  • Qui L , ZhengC, JinY, ZhuK. Polymeric micelles as nanocarriers for drug delivery. Expert Opin. Ther. Pat.17, 819–830 (2007).
  • Chui H -C, Chern C-S, Lee C-K, Chang H-F. Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer39, 1609–1616 (1998).
  • Thompson C , DingC, QuXet al. The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly(allylamine). Colloid Polym. Sci. 286, 1511–1526 (2008).
  • Bhattacharya A , MisraBN. Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci.29, 767–814 (2004).
  • Li G , ZhuangY, MuQ, WangM, FangY. Preparation, characterization and aggregation behaviour of amphiphilic chitosan derivative having poly (L-lactic acid) side chains. Carbohyd. Polym.72, 60–66 (2008).
  • Higa M , YaguchiK, KitaniR. All solid-state polymer electrolytes prepared from a graft copolymer consisting of a polyimide main chain and poly(ethylene oxide) based side chains. Electrochim. Acta55, 1380–1384 (2010).
  • Hoskins C , Kong Thoo Lin P, Teltey L, Cheng W-P. Novel fluorescent amphiphilic poly(allylamine) and their supramacromolecular self-assemblies in aqueous media. Polym. Adv. Technol. doi:10.1002/pat.1962 (2011).
  • Uchegbu IF , SadiqL, ArastooMet al. Quaternary ammonium palmitoyl glycol chitosan – a new polysoap for drug delivery. Int. J. Pharm. 224, 185–199 (2001).
  • Zhu S , QianF, ZhangY, TangC, YinC. Synthesis and characterization of PEG modified dimethylaminomethacrylate chitosan nanoparticles. Eur. Polym. J. Macromol. Nanotech.43, 2244–2253 (2007).
  • Uchegbu IF . Pharmaceutical nanotechnology: polymer vesicles for drug and gene delivery. Expert. Opin. Drug Deliv.3, 629–640 (2006).
  • Kedar U , PhutaneP, ShidhayeS, KadamV, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med.6, 714–729 (2010).
  • Ma Y , CaoT, WebberSE. Polymer micelles from poly(acrylic acid)-graft-polystyrene. Macromolecules31, 1773–1778 (1998).
  • Qu X , OmarL, LeTBHet al. Polymeric amphiphiles branching leads to rare nanodisc shaped planar self-assemblies. Langmuir 24, 9997–10004 (2008).
  • Wang W , TetleyL, UchegbuIF. The level of hydrophobic substitution and the molecular weight of amphiphilic poly-L-lysine-based polymers strongly affects their assembly into polymeric bilayer vesicles. J. Colloid Interf. Sci.237, 200–207 (2001).
  • Cai G , JiangH, ChenZet al. Synthesis, characterization and self-assemble behaviour of chitosan-O-poly(ε-caprolactone). Eur. Polym. J. 45, 1674–1680 (2009).
  • Qui LY , YanMQ. Constructing doxorubicin-loaded polymeric micelles through amphiphilic graft polyphosphazenes containing ethyl tryptophan and PEG segments. Acta Biomaterialia5, 2132–2141 (2009).
  • Li H , LiuJ, DingS, ZhangC, ShenW, YouQ. Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilisation of paclitaxel. Int. J. Bio. Macromolecules.44, 249–256 (2009).
  • Liu X -Q, Du J-Z, Zhang C-P et al. Brush-shaped polycation with poly(ehtylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. Int. J. Pharm.392, 118–126 (2010).
  • Cheng W -P, Thompson CJ, Ryan SM et al.In vitro and in vivo characterisation of a novel peptide delivery system: Amphiphilic polyelectrolyte-salmon calcitonin nanocomplexes. J. Control. Release147, 289–297 (2010).
  • Jeong JH , KimSW, ParkTG. Molecular design of functional polymers for gene therapy. Prog. Polym. Sci.32, 1239–1274 (2007).
  • Uchegbu IF , SchältzenAG, TetleyL. Polymeric chitosan based vesicles for drug delivery. J. Pharmaceut. Pharmacol.50, 453–458 (1998).
  • Wang L -Q, Tu K, Li Y et al. Synthesis and characterisation of temperature responsive graft copolymers of dextran with poly(N-isopropylacrylamide). React. Funct. Polym.53, 19–27 (2002).
  • Francis MF , PireddaM, WinnikFM. Solubilization of poorly water soluble drugs in micelles of hydrophobically modified hydroxylpropylcellulose copolymers. J. Control. Release18, 59–68 (2003).
  • Prabaharan M , ReisRL, ManoJF. Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React. Funct. Polym.67, 43–52 (2007).
  • Yu H , WangW, ChenX, DengC, JingX. Synthesis and characterisation of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers. Biopolymers.83, 233–242 (2006).
  • Wang C , LiG, TaoS, GuoS, YanZ. Crystalline and micellar properties of amphiphilic biodegradable chitooligosaccharide-graft-poly(ε-caprolactone) copolymers. Carbohyd. Polym.64, 466–472 (2004).
  • Wu Y , LiuC, ZhaoX, XiangJ. A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. J. Polym. Res.15, 181–185 (2008).
  • Cai G , JiangH. pH-sensitive nanoparticles self-assembled from a novel class of biodegradable amphiphilic copolymers based on chitosan. J. Mater. Sci.20, 1315–1320 (2009).
  • Abdurrahmangolu S , FiratY. Synthesis and characterization of new dextran-acrylamide gels. J. App. Polym. Sci.106, 3565–3570 (2007).
  • Bajgai MP , ParajuliDC, KoJA, KangHK, Khil M-S, Kim HY. Synthesis, characterisation and aqueous dispersion of dextran-g-poly(1,4-dioxan-2-one) copolymers. Carbohyd. Polym.78, 833–840 (2009).
  • Krishnamoorthi S , MalD, SinghRP. Characterization of graft copolymer based on polyacrylamide and dextran. Carbohyd. Polym.69, 371–377 (2007).
  • Francis MF , LavoieL, WinnikFM, Lerouxa J-C. Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkylether polymeric micelles. Eur. J. Pharm. Biopharm.56, 337–346 (2003).
  • Shi R , BurtHM. Amphiphilic dextran-graft-poly(ε-caprolactone) films for the controlled release of paclitaxel. Int. J. Pharm.271, 167–179 (2004).
  • Onishi Y , EshitaY, MurashitaA, MizunoM, YoshidaJ. Characteristics of DEAE-dextran-MMA graft copolymer as a nonviral gene carrier. Nanomed. Nanotech. Biol. Med.3, 184–191 (2007).
  • Patrizi ML , PiatanidaG, ColuzzaC, MasciG. ATRP synthesis and association properties of temperature responsive dextran copolymers grafted with poly(N-isopropylacrylamide). Eur. Polym. J.45, 2779–2787 (2009).
  • Tan S , ZhaoD, YuanDet al. Influence of indomethacin-loading on the micellation and drug release of thermosensitive dextran-graft-poly(N-iospropylacrylamide). React. Funct. Polym. 71, 820–827 (2011).
  • Browlie A , UchegbuIF, SchätzeinAG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm.274, 41–52 (2004).
  • Wang D -A, Narang AS, Kotb M, Gaber O, Miller DD, Kim SW et al. Novel branched poly(ehtylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules3, 1197–1207 (2002).
  • Boussif O , DelairT, BruaC, VeronL, PaviraniA, KolbeHV. Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vivo. Bioconjugate Chem.10, 877–883 (1999).
  • Wang W , McConaghyAM, TetleyL, UchegbuIF. Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles. Langmuir17, 631–636 (2001).
  • Hong JW , ParkJH Huh KM et al. PEGylated polyethylenimine for in vivo local gene delivery based on lipiodolized emulsion system. J. Control. Release99, 167–176 (2004).
  • Nimesh S , ChandraR. Polyethylenimine nanoparticles as an efficient in vitro siRNA delivery system. Eur. J. Pharm. Biopharm.73, 43–49 (2009).
  • Boussif O , Lezoualc‘hF, ZantaMA, MergnyMD, SchermanD, DemeneixBet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).
  • Brownlie A , UchegbuIF, SchätzeinAG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm.274, 41–52 (2004).
  • Aravindan L , BicknellKA, BrooksG, KhutoryanskiyVV, WilliamsAC. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenime. Int. J. Pharm.378, 201–210 (2009).
  • Qiu LY , BaeYH. Self-assembled polyethylenimine-graft-poly(ε-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials28, 4132–4142 (2007).
  • Hoskins C , Kong Thoo Lin P, Qu X, Tetley J, Cheng WP. The use of nano polymeric self-assemblies based on novel amphiphilic graft polymers for oral hydrophobic drug delivery. Pharm. Res. doi:10.1007/s11095–011–0602–0607 (2011) (Epub ahead of print).
  • Hoskins C , OuaissiM, LimaSet al. In vitro and in vivo anticancer activity of a novel nano-sized formulation based on self-assembling polymers against pancreatic cancer. Pharmaceut Res.27, 2694–2703 (2010).
  • Nimesh S , KumarR, Chandra.R. Novel polyallylamine-dextran sulfate-DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int. J. Pharm.320, 143–149 (2006).
  • Malmstein M . Surfactants and Polymers in Drug Delivery. Marcel Dekker, NY, USA (2002).
  • Gao Y , LiH, WangX. Synthesis and characterization of syndiotactic polystyrene-graft-poly(glycidyl methcrylate) copolymer by atom transfer radical polymerization. Eur. Polym. J.43, 1258–1266 (2007).
  • Lai R , GuoH, KamachiM. Synthesis of a graft polymer PVAc-g-[P(AN-r-BE)-b-PCHO] in ‘one step‘ by radical/cationic transformation polymerization and coupling reaction. Polymer50, 3582–3586 (2009).
  • Perry M , Cheng W-P. New polyamine based amphiphilic polymers for drug delivery. Proceedings of the 23rd Annual Meeting & Exposition of the Controlled Release Society. Vienna, Austria, 22–27 July 2006.
  • Liu X -M, Pramoda KP, Yang Y-Y, Chow SY, He C. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N hydroxyl methylacrylamide): synthesis, temperature sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials25, 2619–2628 (2004).
  • Wang W , QuX, GrayAI, TetleyL, UchegbuIF. Self-assembly of cetyl linear polyethlenimine to give micelles, vesicles and dense nanoparticles. Macromolecules37, 9114–9122 (2004).
  • Thompson C , TetleyL, Cheng W-P. The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin – towards oral insulin delivery. Int. J. Pharm.383, 216–227 (2010).
  • Xu J -P, Chen W-D, Shen J-C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J. Control. Release107, 502–512 (2005).
  • Xu FJ , PingY, MaJet al. Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery. Bionconjug. Chem. 20, 1449–1458 (2009).
  • Yusa S , MikiharuK, MorishimaY. Hydrophobic self-association of cholesterol moities covalentyl linked to polyelectrolytes: effect of spacer bond. Langmuir14, 6059–6067 (1998).
  • Limer AJ , RullayAK, San Miguel V et al. Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. React. Funct. Polym.66, 51–64 (2006).
  • Kohle P , KhandareJ, PillaiOet al. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27, 660–669 (2006).
  • Savíc R , EisenbergA, MaysingerD. Block copolymer micelles as delivery vehicles of hydrophobic drugs: micelle–cell interactions. J. Drug. Target.14, 343–355 (2006).
  • Thompson C , Cheng W-P, Gadad P et al. Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by Caco-2 cells – towards oral insulin. Pharm. Res.28, 886–896 (2011).
  • Ziang HL , ZhuKJ. Bioadhesive fluorescent microspheres as visible carriers for local delivery of drugs. I: preparation and characterization of insulin-loaded PCEFB/PLGA microspheres. J. Microencapsul.19, 451–461 (2002).
  • Laukkanen A , WinnikFM, TenhuH, Pyrene-labelled graft copolymers of N-vinylcaprolactam: synthesis and solution properties in water. Macromolecules38, 2439–2448 (2005).
  • Fan H , HuangJ, LiY, YuJ, ChenJ. Fabrication OF reduction-degradable micelle based on disulfide-linked graft copolymer–camptothecin conjugate for enhancing solubility and stability of camptothecin. Polymer.51, 5107–5114 (2010).
  • Khandare J , MinkoT. Polymer-drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci.31, 359–397 (2006).
  • Hoffman AS , StaytonPS. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci.32, 922–939 (2007).
  • Chytil P , EtrychT, KřížJ, ŠubrV, UlrichK. N-(2-hydroxyproply)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm.41, 473–482 (2010).
  • Maiti S , JayachandranKN, ChatterjiPR. Probing the association behaviour of poly(ethylene glycol) based amphiphilic comb-like polymer. Polymer42, 7801–7808 (2001).
  • Ryan SM , WangX, MantovaniGet al. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly (poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J. Control. Release 135, 51–59 (2009).
  • Xie K -L, Hu K, Chen Y. Synthesis of amphiphilic polysiloxanes modified with multi-cationic groups to improve wettability of polyester materials. Iran. Polym. J.19, 447–455 (2010).
  • Motornov M , RoiterY, TokarevI, MinkoS. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci.35, 174–211 (2010).
  • Chan P , KurisawaM, ChungJE, YangYY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a novel carrier for tumor-targeted gene delivery. Biomaterials28, 540–549 (2007).
  • Brown MD , SchätzleinA, BrownlieAet al. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bionconjugate Chem. 11, 880–891 (2000).
  • Parrish B , BreitenkampRB, EmrickT. PEG- and peptide- grafted aliphatic polyesters by click chemistry. JACS127, 7404–7410 (2005).
  • Zhu L -P, Du C-H, Xu L et al. Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. Eur. Polym. J.43, 1383–1393 (2007).
  • Thompson CJ , TetleyL, UchegbuIF, Cheng W-P. The complexation between novel comb-shaped amphiphilic polyallylamine and insulin – towards insulin delivery. Int. J. Pharm.376, 46–55 (2009).
  • Schmaljohann D . Thermo- and pH-responsive polymers in drug delivery. Adv. Drug. Deliv. Rev.58, 1655–1670 (2005).
  • Jeong B , GutowskaA. Lessons from nature: stimuli responsive polymers and their biomedical applications. Trends Biotechnol.7, 305–377 (2002).
  • Zhang L , HuCH, ChengSX, ZhuoRX. Hyperbranched amphiphilic polymer with folate mediated targeting property. Colloids Surf. B Biointerfaces.79, 427–433 (2010).
  • Gu J , Cheng W-P, Liu J et al. pH-Triggered reversible ‘stealth‘ polycationic micelles. Biomacromolecules9, 255–262 (2008).
  • Shi H -Y, Zhang L-M. Phase-transititon and aggregation characteristics of a thermoresponsive dextran derivative in aqueous solution. Carbohyd. Res.341, 2414–2419 (2006).
  • Benns JM , MahatoRI, KimSW. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft polyethylenimine. J. Control. Release79, 255–269 (2002).
  • Ghiamazemi S , AmanzadehA, DinarvandR, Rafiee-TehrantM, AminiM. Synthesis and characterisation and evaluation of cellular effects of FOL-PEG-g-PEI-GAL nanoparticles as a potential non-viral vector for gene delivery. J Nanomater.63136, 1–10 (2010).
  • Zhu J , GosenC, MarchantRE. Synthesis and characterization of poly(vinyl amine)-based amphiphilic comb-like dextran glycopolymers by a two-step method. J. Polym. Sci. A Polym. Chem.44, 192–199 (2005).
  • Lin W -J, Chen MH. Synthesis of multifunctional chitosan with galactose as a targeting ligand for glycoprotein receptor. Carbohyd. Polym.67, 474–480 (2007).
  • Iwata R , SatohR, IwasakiY, AkiyoshiK. Covalent immobilization of antibody fragments on well defined polymer brushes via site-directed method. Colloids Surf. B Biointerfaces62, 288–298 (2008).
  • Morris VB , SharmaCP. Folate mediated l-arginine modified oligo(alkylaminosiloxane) graft poly(ethyleneimine) for tumor targeted gene delivery. Biomaterials32(11), 3030–3041 (2011).
  • Wang Y , WangY, XiangJ, YaoK. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules11, 3531–3538 (2010).
  • Essa S , RabanelJM, HildgenP. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D,L-lactide) (PLA) based nanoparticles. Eur. J. Pharm. Biopharm.75, 96–106 (2010).
  • Aliabadi HM , ElhasiAS, MahmudAet al. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int. J. Pharm. 329, 158–165 (2007).
  • Lavasanifar A , SamuelJ, KwonGS. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilisation and haemolytic activity of amphotericin B. J. Control. Release77, 155–160 (2001).
  • Gong J , HuoM, ZhuoJet al. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. Int. J. Pharm. 376, 161–168 (2009).
  • Birnbaum DT , KosmalaJD, HenthornDB, PeppasLBet al. Controlled release of β-estradiol from PLGA microparticles: the effect of organic phase solvent on encapsulation and release. J. Control. Release 65, 375–387 (2000).
  • Park JH , LeeS, Kim J-H et al. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci.33, 113–137 (2008).
  • Husseini GA , PittWG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug. Deliv. Rev.60, 1137–1152 (2008).
  • Huang J , WigentRJ, SchwartzJB. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J. Pharm. Sci.97, 251–261 (2008).
  • Soo PL , LuoL, MaysingerD, EisenbergA. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir18, 9996–10004 (2002).
  • Marsac PJ , ShamblinSL, TaylorLS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res.26, 139–151 (2009).
  • Gaucher G , Dufresne M-H, Sant VP et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release109, 169–188 (2005).
  • Rekatas CJ , MaiSM, CrothersMet al. The effect of hydrophobic chemical structure and chain length on the solubilization of griseofulvin in aqueous micellar solutions of block copoly(oxyalkylene)s. Phys. Chem. Chemic. Physic. 21, 4769–4773 (2001).
  • Qu X , KhutoryanskiyVV, StewartAet al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7, 3453–3459 (2006).
  • Vassiliou AA , PapadimitriouSA, BikiarisDN, MattheolabakisG, AvgoustakisK. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. J. Control. Release148, 388–395 (2010).
  • Kataoka K , MatsumotoT, YokoyamaMet al. Doxorubicin-loaded poly(ethylene glycol)-poly (beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Control. Release 64, 143–153 (2000).
  • Lavasanifar A , SamuelJ, SattariS, KwonGS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm. Res.19, 418–422 (2002).
  • Mahmud A , PatelS, MolaviOet al. Self-associating poly(ethylene oxide)-b-poly(alpha-cholesteryl carboxylate-epsilon-caprolactone) block copolymer for the solubilization of STAT-3 inhibitor cucurbitacin I. Biomacromolecules 10, 471–478 (2009).
  • Mahmuda A , XiongX, LavasanifarA. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. Eur. J. Pharm. Biopharm.69, 923–934 (2008).
  • Gu J , Cheng W-P, Hoskins C et al. Nano self-assemblies based on cholate grafted poly-L-lysine enhanced the solubility of sterol-like drugs. J. Microencapsul.28(8), 752–762 (2011).
  • Benniston AC , HarrimanA, HowellSL, SamsCA, ZhiYG. Intramolecular excimer formation and delayed fluorescence in sterically constrained pyrene dimers. Chem. Eur. J.13, 4665–4674 (2007).
  • Pierri E , AvgoustakisK. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J. Biomed. Mater. Res. A75, 639–647 (2005).
  • Zhang Y , LiX, ZhouYet al. Preparation and evaluation of poly(ethylene glycol)- poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine A. Nanoscale Res. Lett. 5, 917–925 (2010).
  • Gaucher G , SatturwarP, Jones M-C, Furtos A, Leroux J-C. Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm.76, 147–158 (2010).
  • Hu F -Q, Liu L-N, Du Y-Z, Yuan H. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials30, 6955–6963 (2009).
  • Zheng C , QiuL, YaoX, ZhuK. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int. J. Pharm.373, 133–140 (2009).
  • Talelli M , RijckenCJF, OliveiraSet al. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J. Control. Release 151, 183–192 (2011).
  • Sabokatin MR , TabatabaeeRM, MaharramovA, RamazanovA. Design and characterization of chitosan nanoparticles as delivery systems for paclitaxel. Carbohyd. Polym.82, 466–471 (2010).
  • Oh KT , BronichTK, BrombergL, HattonTA, KabanovAV. Block ionomer complexes as prospective nanocantainers for drug delivery. J. Control. Release115, 9–17 (2006).
  • Maeda H , BharateGY, DaruwallaJ. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm.71, 409–419 (2009).
  • Matsumura Y . Poly(amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug. Deliv. Rev.60, 899–914 (2008).
  • Rapoport N . Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.32, 962–990 (2007).
  • Torchilin V . Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug. Deliv. Rev.63, 131–135 (2011).
  • Wang J , MongaytDA, LukyanovAN, LevchenkoTS, TorchilinVP. Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int. J. Pharm.272, 129–165 (2004).
  • Na HS , LimYK, Jeong Y-I et al. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int. J. Pharm.383, 192–200 (2010).
  • Zhang W , ChiY, ChenYet al. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32, 2894–2906 (2011).
  • Wang Y , YangT, WangXet al. Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. J. Control. Release 149, 299–306 (2011).
  • Westedt U , KalinowskiM, WittmarMet al. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Control. Release 119, 41–51 (2007).
  • Torchilin VP . Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci.61, 2549–2559 (2004).
  • Wang X , YangL, ChenZ, ShinDM. Application of nanotechnology in cancer therapy and imaging. Am. Cancer J. Clin.58, 97–110 (2008).
  • Wiradharma N , ZhangY, VenkataramanS, HedrickJL, YangYY. Self-assembled nanostructures for delivery of anticancer therapeutics. Nano Today4, 302–317 (2009).
  • Li J , WangB, LiuP. Possibility of active targeting tumor by local hyperthermia with temperature sensitive nanoparticles. Med. Hypotheses71, 249–251 (2008).
  • Osada K , ChristineRJ, KataokaK. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J. R. Soc. Interfac.6, 325–339 (2009).
  • Chen J , XingMMQ, ZhongW. Degradable micelles based on hydrolytically degradable amphiphilic graft copolymers for doxorubicin delivery. Polymer52, 933–941 (2011).
  • Sun Y , YanX, YuanTet al. Disassemblable micelles based on reduction-degradable amphiphilic copolymers for intracellular delivery of doxorubicin. Biomaterials 31, 7124–7131 (2010).
  • Yang SR , LeeHJ, Kim J-D. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J. Control. Release114, 60–68 (2006).
  • Lo SL , WangS. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials29, 2408–2414 (2008).
  • Harishprashanth KV , TharanthanRN. Chitin/chitosan: modifications and their unlimited application potential – an overview. Trends Food Sci. Tech.18, 117–131 (2007).
  • Zhao Y , SunY, ZangZet al. Synthesis and characterization of graft copolymer of chitosan and poly ethylene glycol. Mol. Biol. Reports 38, 2455–2462 (2011).
  • Liu J , LiH, JiangX, ZhangC, PingQ. Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohyd. Polym.82, 432–439 (2010).
  • Ebrahimnejad P , RsssoulD, SajadiAet al. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines. Nanomed. Nanotech. Biol. Med. 6, 478–485 (2010).
  • Etrych T , ChytilP, MrkvanT. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release132, 184–192 (2008).
  • Francis MF , CristeaM, WinnikFM. Exploiting the vitamin B-12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules6, 2462–2467 (2005).
  • Aranaz I , HarrisR, HerasA. Chitosan amphiphilic derivatives. Chemistry and application. Curr. Org. Chem.14, 308–330 (2010).
  • Bromberg L . Polymeric micelles in oral chemotherapy. J. Control. Release128, 99–112 (2008).
  • Francis MF , CristeaM, YangY, WinnikFM. Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporine A across Caco-2 cells. Pharm. Res.22, 209–219 (2005).
  • Aliabadi HM , MahmudA, SharifabadiAD, LavasanifarA. Micelles of methyoxy poly(ethylene)-b-poly(ε-caprolactone) as vechiles for the solubilisation and controlled delivery of cyclosporine A. J. Control. Release104, 301–311 (2005).
  • Pierri E , AvgoustakisK. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J. Biomed. Mater. Res. A75, 639–647 (2005).
  • Kano T , KakinumaC, WadaS, MorimotoK, OgiharaT. Enhancement of drug solubility and absorption by copolymers of e-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate. Drug Metab. Pharmacokinet.26, 79–86 (2011).
  • Yokoyama M . Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv.7, 145–158 (2010).
  • Jiang GB , QuanD, LiaoK, WangH. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol. Pharm.3, 152–160 (2006).
  • Zhao D , Sun D-X, Guo Y. Preparation of cetyl-chitosan nanoparticles as carriers for paracetamol. Trans. Tianjin University8, 234–238 (2002).
  • Huang Y , LiL, FangY. Preparation of size-tunable, highly monodisperse particles by self-assembly of N-phthaloylchitosan-g-polycaprolactone molecular bottle brushes. Mater. Lett.63, 1416–1418 (2009).
  • Du Y -Z, Wang L, Yuan H, Wei X-H, Hu F-Q. Preparation and characteristics of lineoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf. B69, 257–263 (2009).
  • Opanasopit P . Ngawhirunpat T, Rojanarata T, Choochottiros C, Chirachanchai S. N-Phthaloylchitosan-g-mPEG design for all-trans retinoic acid-loaded polymeric micelles. Eur. J. Pharm. Sci.30, 424–431 (2007).
  • Opanasopit P , NgawhirunpatT, ChaidedgumjornAet al. Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system. Eur. J. Pharm. Biopharm. 64, 269–276 (2006).
  • Yudovin-Farber I . Yanay C, Azzam T, Linial M, Domb AJ. Quaternary ammonium polysaccharides for gene delivery. Bioconjugate Chem.16, 1196–1203 (2005).
  • Akiyoshi K , KobayashiS, ShichibeS, MixDM, BaudysM, KimSWet al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release 54, 313–320 (1998).
  • Jung S -W, Jeong Y-I, Kim S-H. Characterization of hydrophobized pullulan with various hydrophobicities. Int. J. Pharm.254, 109–121 (2003).
  • Scomparin A , SalmasoS, BersaniS, Satchi-FainaroR, CalicetiP. Novel folate and non-folated pullulan bioconjugates for anticancer drug delivery. Eur. J. Pharm. Sci.42, 547–558 (2011).
  • Zhang L , Hu C-H, Cheng S-X, Zhou R-X. PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery. Colloids Surf. B76, 427–433 (2010).
  • Wang W , TetleyL, UchegbuIF. A new class of amphiphilic poly-L-lysine based polymers forms nanoparticles on probe sonication in aqueous media. Langmuir16, 7859–7866 (2000).
  • Benns JM , Choi J-S, Mahato RI, Park J-S, Kim SW. PH sensitive cationic polymer gene delivery vechile: N-Ac-poly(L-histine)-graft-poly(L-lysine) comb shaped polymer. Bioconjugate Chem.11, 637–645 (2000).
  • Jeong JH , KangHS, YangSR, Kim J-D. Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(aspargine) grafted with poly(caprolactone). Polymer44, 583–591 (2003).
  • Duan K , ZhangX, TangXet al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Collolids Surf. B 76, 475–482 (2010).
  • Nam YS , KangHS, ParkJYet al. New micelle-like polymer aggregates made from PEI–PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomaterials 24, 2053–2059 (2003).
  • Lee SC , KimC, KwonIC, ChungH, JeongSY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel. J. Control. Release89, 437–446 (2003).
  • Lavasanifar A , SamuelJ, KwonGS. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(L-aspartamide) derrivatives. Colloids Surf. B22, 115–126 (2001).
  • Li Y , Ding L-J, Nakamura H, Nakashima K. Preparation and characterisation of nanoaggregates of poly(ethylene oxide)-b-polymethacrylate and poly-L-lysine. J. Colloid. Interf. Sci.264, 561–564 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.