157
Views
0
CrossRef citations to date
0
Altmetric
Review

Physically Facilitating drug-delivery Systems

, , , , &
Pages 125-139 | Published online: 19 Dec 2011

References

  • Wang C , HeC, TongZ, LiuX, RenB, ZengF. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int. J. Pharm.308(1–2), 160–167 (2006).
  • Santini J , RichardsA, ScheidtR, CimaM, LangerR. Microchips as controlled drug-delivery devices. Angew. Chem. Int. Ed.39(14), 2397–2407 (2000).
  • Kassan DG , LynchAM, StillerMJ. Physical enhancement of dermatologic drug delivery: iontophoresis and phonophoresis. J. Am. Acad. Dermatol.34(4), 657–666 (1996).
  • Fellinger K , SchmidJ. Klinik und therapie des chronischen gelenkrheumatismus. JAMA155(3), 322 (1954).
  • Newman MK , KillM, FramptonG. Effects of ultrasound alone and combined with hydrocortisone injections by needle or hypo-spray. Am. J. Phys. Med.37(4), 206–209 (1958).
  • Mitragotri S , BlankschteinD, LangerR. Ultrasound-mediated transdermal protein delivery. Science269(5225), 850–853 (1995).
  • Mitragotri S , EdwardsDA, BlankschteinD, LangerR. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J. Pharm. Sci.84(6), 697–706 (1995).
  • Glushchenko L . Phonophoresis of thiamin and ascorbic acid. Zdravookhr Beloruss11, 80–81 (1977).
  • Chatterjee DS . A double-blind clinical study with benzydamine 3% cream on soft tissue injuries in an occupational health centre. J. Int. Med. Res.5(6), 450–458 (1977).
  • Bommannan D , MenonGK, OkuyamaH, EliasPM, GuyRH. Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm. Res.9(8), 1043–1047 (1992).
  • Polat BE , HartD, LangerR, BlankschteinD. Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends. J. Control. Release152(3), 330–348 (2011).
  • Brennen CE . Cavitation and Bubble Dynamics. Oxford University Press, NY, USA (1995).
  • Tang H , WangCC, BlankschteinD, LangerR. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm. Res.19(8), 1160–1169 (2002).
  • Tezel A , SensA, MitragotriS. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J. Pharm. Sci.91(2), 444–453 (2002).
  • Conner-Kerr T , FranklinM, KerrJ, SmithS, FranklinR. Phonophoretic delivery of dexamethasone to human transdermal tissues: a controlled pilot study. Eur. J. Phys. Rehab. Med.8(1), 19–23. (1998).
  • Gatev S , VatsovE. Attempt to treat essential pruritus vulvae and some inflammatory gynecologic diseases with hydrocortisone phonophoresis. Akush Ginekol (Sofiia)5(2), 123–128 (1966).
  • Hikima T , HiraiY, TojoK. Effect of ultrasound application on skin metabolism of prednisolone 21-acetate. Pharmaceut. Res.15(11), 1680–1683 (1998).
  • Quillin W . Ultrasonic phonophoresis. Phys. Sportsmed.10, 211 (1982).
  • Yamashita A , HiraiY, TojoK. Effect of ultrasound on rate of drug absorption through skin. J. Chem. Eng. Jpn29(5), 812–816 (1996).
  • Bjarnason I , HayllarJ, MacphersonAJ, RussellAS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology104(6), 1832–1847 (1993).
  • Rainsford KD . Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am. J. Med.107(6A), 27S–36S (1999).
  • Meshali MM , Abdel-AleemHM, SakrFM, NazzalS, El-MalahY. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Pharmazie63(1), 49–53 (2008).
  • Sharma D , HaneshM, YahyaA, MohamedM. Phonophoresis with diclofenac versus ketoprofen for knee joint injuries. Middle East J. Int. Med.2, 9–12 (2009).
  • Kaya K , DelialougluS, BabadagMet al. Combined physiotherapy in patients with arthrogenous pain of temporomandibular joint. J. Phys. Med. Rehab. Sci. 13, 6–14, (2010).
  • Yang JH , KimTY, LeeJH, YoonSW, YangKH, ShinSC. Anti-hyperalgesic and anti-inflammatory effects of ketorolac tromethamine gel using pulsed ultrasound in inflamed rats. Arch. Pharm. Res.31(4), 511–517 (2008).
  • Barja PR , VelosoDJDV. Photoacoustic study of the penetration kinetics of nimesulid into human skin. Proceedings of : 15th International Conference on Photoacoustic and Photothermal Phenomena (Icppp15), 214 (2010).
  • Shiran M , MotevalianM, RavanfarR, BohlouliS. The effect of bubble surface charge on phonophoresis: implications in transderaml piroxicam delivery. Iran J. Pharm. Ther.7(1), 15–19 (2008).
  • Silveira F , BarjaP, Acosta-AvalosD. Photoacoustic evaluation of the penetration of piroxicam gel applied with phonophoresis into human skin. J. Phys. Conf. Ser.214(1), 012022 (2010).
  • Heyneman CA , Lawless-LidayC, WallGC. Oral versus topical NSAIDs in rheumatic diseases: a comparison. Drugs60(3), 555–574 (2000).
  • Polat BE , FigueroaPL, BlankschteinD, LangerR. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate. J. Pharm. Sci.100(2), 512–529 (2011).
  • Golden GM , MckieJE, PottsRO. Role of stratum corneum lipid fluidity in transdermal drug flux. J. Pharm. Sci.76(1), 25–28 (1987).
  • Yu B , DongCY, SoPT, BlankschteinD, LangerR. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J. Invest. Dermatol.117(1), 16–25 (2001).
  • Yu B , KimKH, SoPT, BlankschteinD, LangerR. Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J. Invest. Dermatol.120(3), 448–455 (2003).
  • Blankschtein D , LopezRFV, SetoJE, LangerR. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials32(3), 933–941 (2011).
  • Polat BE , LinS, MendenhallJD, VanvellerB, LangerR, BlankschteinD. Experimental and molecular dynamics investigation into the amphiphilic nature of sulforhodamine B. J. Phys. Chem. B115(6), 1394–1402 (2011).
  • Dakowicz A , LatosiewiczR. The value of iontophoresis combined with ultrasound in patients with the carpal tunnel syndrome. Rocz. Akad. Med. Bialymst.50(Suppl. 1), 196–198 (2005).
  • Dudelzak J , HussainM, PhelpsRG, GottliebGJ, GoldbergDJ. Evaluation of histologic and electron microscopic changes after novel treatment using combined microdermabrasion and ultrasound-induced phonophoresis of human skin. J. Cosmet. Laser Ther.10(4), 187–192 (2008).
  • Dahlan A , AlparHO, StickingsP, SesardicD, MurdanS. Transcutaneous immunisation assisted by low-frequency ultrasound. Int. J. Pharm.368(1–2), 123–128 (2009).
  • Tezel A , PaliwalS, ShenZ, MitragotriS. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine23(29), 3800–3807 (2005).
  • Prausnitz MR , LangerR. Transdermal drug delivery. Nat. Biotechnol.26(11), 1261–1268 (2008).
  • Prausnitz MR , MitragotriS, LangerR. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov.3(2), 115–124 (2004).
  • Newman CM , BettingerT. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther.14(6), 465–475 (2007).
  • Frenkel V . Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev.60(10), 1193–1208 (2008).
  • Miller DL , SongJ. Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med. Biol.29(6), 887–893 (2003).
  • Hashiya N , AokiM, TachibanaKet al. Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem. Biophys. Res. Commun. 317(2), 508–514 (2004).
  • Unger EC , HershE, VannanM, MccreeryT. Gene delivery using ultrasound contrast agents. Echocardiogr. J. Card.18(4), 355–361 (2001).
  • Husseini GA , Diaz De La Rosa MA, Gabuji T, Zeng Y, Christensen DA, Pitt WG. Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J. Nanosci. Nanotechnol.7(3), 1028–1033 (2007).
  • Schroeder A , AvnirY, WeismanSet al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23(7), 4019–4025 (2007).
  • Hernot S , KlibanovAL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev.60(10), 1153–1166 (2008).
  • Kodama T , TanPH, OffiahIet al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med. Biol. 31(12), 1683–1691 (2005).
  • Suzuki R , NamaiE, OdaYet al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J. Control. Release 142(2), 245–250 (2010).
  • Neumann E , Schaefer-RidderM, WangY, HofschneiderPH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J.1(7), 841–845 (1982).
  • Chang DC , ChassyBM, SaundersJA, SowersAEE. Guide to Electroporation and Electrofusion. Academic Press, San Diego, CA, USA (1992).
  • Dev SB , HofmannGA. Electrochemotherapy – a novel method of cancer treatment. Cancer Treat. Rev.20(1), 105–115 (1994).
  • Gehl J . Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand.177(4), 437–447 (2003).
  • Heller R . Overview of electroporation. Technol. Cancer Res. Treat.1(5), 317–318 (2002).
  • Heller R , GilbertR, JaroszeskiMJ. Clinical applications of electrochemotherapy. Adv. Drug Deliv. Rev.35(1), 119–129 (1999).
  • Miklavcic D , PucM. Electroporation. In: Encyclopedia of Biomedical Engineering. Wiley, Hoboken, NJ, USA, 1–10 (2006).
  • Mir LM , MorsliN, GarbayJR, BillardV, RobertC, MartyM. Electrochemotherapy: a new treatment of solid tumors. J. Exp Clin. Cancer Res.22(Suppl. 4), 145–148 (2003).
  • Neumann E , BoldtE. Membrane electroporation: the dye method to determine the cell membrane conductivity. Prog Clin. Biol. Res.343, 69–83 (1990).
  • Ramos C , TeissieJ. Electrofusion: a biophysical modification of cell membrane and a mechanism in exocytosis. Biochimie82(5), 511–518 (2000).
  • Teissie J , GolzioM, RolsMP. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim. Biophys. Acta.1724(3), 270–280 (2005).
  • Weaver JC , ChizmadzhevYA. Theory of electroporation: a review. Bioelectrochem. Bioenerget. (41), 135–160 (2005).
  • Zimmermann U , PilwatG, BeckersF, RiemannF. Effects of external electrical fields on cell membranes. Bioelectroch. Bioener.3(1), 58–83 (1976).
  • Edd JF , HorowitzL, DavalosRV, MirLM, RubinskyB. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng.53(7), 1409–1415 (2006).
  • Rubinsky B , OnikG, MikusP. Irreversible electroporation: a new ablation modality – clinical implications. Technol. Cancer Res. Treat.6(1), 37–48 (2007).
  • Golzio M , RolsMP, TeissieJ. In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods33(2), 126–135 (2004).
  • Marshall WG Jr, Boone BA, Burgos JD et al. Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther.17(3), 419–423 (2010).
  • Best SR , PengS, JuangCMet al. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 27(40), 5450–5459 (2009).
  • Daud AI , DecontiRC, AndrewsSet al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26(36), 5896–5903 (2008).
  • Roos AK , KingA, PisaP. DNA vaccination for prostate cancer. Methods Mol. Biol.423, 463–472 (2008).
  • Roos AK , MorenoS, LederC, PavlenkoM, KingA, PisaP. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther.13(2), 320–327 (2006).
  • Bodles-Brakhop AM , HellerR, Draghia-AkliR. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol. Ther.17(4), 585–592 (2009).
  • Sura HS , MagnayJ, AttridgeK, ZghoulN, DobsonJ, El Haj A. Gene expression changes in stem cells following targeted localisation in a flow system using magnetic particle technology. Eur. Cells Mater.16(Suppl. 3), 18 (2008).
  • Kyrtatos PG , LehtolainenP, Junemann-RamirezMet al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc. Interv. 2(8), 794–802 (2009).
  • Veiseh O , GunnJW, ZhangM. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev.62(3), 284–304 (2010).
  • Hu SH , TsaiCH, LiaoCF, LiuDM, ChenSY. Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir24(20), 11811–11818 (2008).
  • Liong M , LuJ, KovochichMet al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008).
  • Kohler N , SunC, FichtenholtzA, GunnJ, FangC, ZhangM. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small2(6), 785–792 (2006).
  • Jain TK , RicheyJ, StrandM, Leslie-PeleckyDL, FlaskCA, LabhasetwarV. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials29(29), 4012–4021 (2008).
  • Bhutia SK , MaitiTK. Targeting tumors with peptides from natural sources. Trends Biotechnol.26(4), 210–217 (2008).
  • Smith CA , De La Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials31(15), 4392–4400 (2010).
  • Veiseh O , GunnJW, KievitFMet al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5(2), 256–264 (2009).
  • Lee JH , HuhYM, JunYWet al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2007).
  • Sakamoto JH , SmithBR, XieB, RokhlinSI, LeeSC, FerrariM. The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents. Technol. Cancer Res. Treat.4(6), 627–636 (2005).
  • Medarova Z , PhamW, FarrarC, PetkovaV, MooreA. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med.13(3), 372–377 (2007).
  • Mccarthy JR , WeisslederR. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev.60(11), 1241–1251 (2008).
  • Chouly C , PouliquenD, LucetI, JeuneJJ, JalletP. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul.13(3), 245–255 (1996).
  • Dobrovolskaia MA , AggarwalP, HallJB, McneilSE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm.5(4), 487–495 (2008).
  • Fuertges F , AbuchowskiA. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Control. Release11(1–3), 139–148 (1990).
  • Veiseh O , KievitFM, GunnJW, RatnerBD, ZhangM. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials30(4), 649–657 (2009).
  • Sun C , FangC, StephenZet al. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine 3(4), 495–505 (2008).
  • Yang J , LeeCH, KoHJet al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew. Chem. Int. Ed. Engl. 46(46), 8836–8839 (2007).
  • Yallapu MM , OthmanSF, CurtisET, GuptaBK, JaggiM, ChauhanSC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials32(7), 1890–1905 (2011).
  • Maier-Hauff K , RotheR, ScholzRet al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53–60 (2007).
  • Johannsen M , GneveckowU, ThiesenBet al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52(6), 1653–1661 (2007).
  • Johannsen M , GneveckowU, EckeltLet al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia 21(7), 637–647 (2005).
  • Daniell MD , HillJS. A history of photodynamic therapy. Aust. Nz. J. Surg61(5), 340–348 (1991).
  • Ackroyd R , KeltyC, BrownN, ReedM. The history of photodetection and photodynamic therapy. Photochem. Photobiol.74(5), 656–669 (2001).
  • Katz JS , BurdickJA. Light-responsive biomaterials: development and applications. Macromol. Biosci.10(4), 339–348 (2010).
  • Juarranz A , JaenP, Sanz-RodriguezF, CuevasJ, GonzalezS. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol.10(3), 148–154 (2008).
  • O‘Connor AE , GallagherWM, ByrneAT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol.85(5), 1053–1074 (2009).
  • Kato H . Photodynamic therapy for lung cancer – a review of 19 years‘ experience. J. Photoch. Photobio. B42(2), 96–99 (1998).
  • Skyrme RJ , FrenchAJ, DattaSN, AllmanR, MasonMD, MatthewsPN. A Phase-1 study of sequential mitomycin C and 5-aminolaevulinic acid-mediated photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int.95(9), 1206–1210 (2005).
  • Schuller DE , MccaughanJS, RockRP. Photodynamic therapy in head and neck-cancer. Arch. Otolaryngol.111(6), 351–355 (1985).
  • Rhodes LE , De Rie M, Enstrom Y et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma – results of a multicenter randomized prospective trial. Arch. Dermatol.140(1), 17–23 (2004).
  • Dolmans DE , FukumuraD, JainRK. Photodynamic therapy for cancer. Nat. Rev. Cancer3(5), 380–387 (2003).
  • Dougherty TJ . An update on photodynamic therapy applications. J. Clin. Laser Med. Surg.20(1), 3–7 (2002).
  • Baptista MS , WainwrightM. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res.44(1), 1–10 (2011).
  • Donnelly RF , CassidyCM, TunneyMM, MccarronPA. Drug delivery strategies for photodynamic antimicrobial chemotherapy: from benchtop to clinical practice. J. Photoch. Photobio. B95(2), 71–80 (2009).
  • Wakamatsu T , SaitoT, HayashiJ, TakeichiT, KitamotoK, AizawaK. Long-term inhibition of intimal hyperplasia using vascular photodynamic therapy in balloon-injured carotid arteries. Med. Mol. Morphol.38(4), 225–232 (2005).
  • Ortu P , LamuragliaGM, RobertsWG, FlotteTJ, HasanT. Photodynamic therapy of arteries. A novel approach for treatment of experimental intimal hyperplasia. Circulation85(3), 1189–1196 (1992).
  • Blumenkranz MS , WoodburnKW, QingF, VerdoonerS, KesselD, MillerR. Lutetium texaphyrin (Lu-Tex): a potential new agent for ocular fundus angiography and photodynamic therapy. Am. J. Ophthalmol.129(3), 353–362 (2000).
  • Mittra RA , SingermanLJ. Recent advances in the management of age-related macular degeneration. Optom. Vis. Sci.79(4), 218–224 (2002).
  • Leman JA , MortonCA. Photodynamic therapy: applications in dermatology. Expert Opin. Biol. Ther.2(1), 45–53 (2002).
  • Silva JN , FilipeP, MorlierePet al. Photodynamic therapy: dermatology and ophthalmology as main fields of current applications in clinic. Biomed. Mater. Eng. 18(4–5), 319–327 (2008).
  • Trauner KB , Gandour-EdwardsR, BambergM, ShortkroffS, SledgeC, HasanT. Photodynamic synovectomy using benzoporphyrin derivative in an antigen-induced arthritis model for rheumatoid arthritis. Photochem. Photobiol.67(1), 133–139 (1998).
  • Chatterjee D , FongL, ZhangY. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev.60(15), 1627–1637 (2008).
  • Kennedy JC , PottierRH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B14(4), 275–292 (1992).
  • Bulina ME , ChudakovDM, BritanovaOVet al. A genetically encoded photosensitizer. Nat. Biotechnol. 24(1), 95–99 (2006).
  • Allison R , DownieG, CuencaR, HuX, ChildsC, SibataC. Photosensitizers in clinical PDT. Photodiagn. Photodyn.1(1), 27–42 (2004).
  • Cassidy CM , TunneyMM, MageeNDet al. Drug and light delivery strategies for photodynamic antimicrobial chemotherapy (PACT) of pulmonary pathogens: a pilot study. Photodiagnosis Photodyn. Ther. 8(1), 1–6 (2011).
  • Nielsen CB , JohnsenM, ArnbjergJet al. Synthesis and characterization of water-soluble phenylene-vinylene-based singlet oxygen sensitizers for two-photon excitation. J. Org. Chem. 70(18), 7065–7079 (2005).
  • Bechet D , CouleaudP, FrochotC, ViriotML, GuilleminF, Barberi-HeyobM. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol.26(11), 612–621 (2008).
  • Toda M . Intraoperative navigation and fluorescence imagings in malignant glioma surgery. Keio. J. Med.57(3), 155–161 (2008).
  • Mou CY , TsaiCP, ChenCY, HungY, ChangFH. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem.19(32), 5737–5743 (2009).
  • Skrabalak SE , AuL, LiX, XiaY. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc.2, 2182–2190 (2007).
  • Yavuz MS , ChengY, ChenJet al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8(12), 935–939 (2009).
  • Wang ZL . Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B104(6), 1153–1175 (2000).
  • Su ZM , WangTT, ChaiFet al. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. J. Mater. Chem. 21(14), 5299–5306 (2011).
  • Ambure S , TerrerosD, XuT. Release of biomolecues from a photovoltaic device for targeted drug delivery. Presented at: AVS 57th International Symposium & Exhibition, Proceedings. Albuquerque, NM, USA, 17–22 October 2010.
  • Schwartz J . Microscopic solar cells could change cancer therapy. Biophotonics18(1), 13–14 (2011).
  • Yao Y , ZhangB, GreenMA, ConibeerG, ShresthaSK. Photovoltaic effect in Ge nanocrystals/C-silicon heterojunctions devices. IEEE Phot. Spec. Conf. (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.