114
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Buckets: Cyclodextrins for Oral Cancer Therapy

, , , , &
Pages 43-57 | Published online: 19 Dec 2011

References

  • Halfdanarson TR , JatoiA. Oral cancer chemotherapy: the critical interplay between patient education and patient safety. Curr. Oncol. Rep.12(4), 247–252 (2010).
  • Weingart SN , BrownE, BachPBet al. NCCN Task Force report: oral chemotherapy. J. Natl Compr. Canc. Netw. 3, S1–S14 (2008).
  • Payne SA . A study of quality of life in cancer patients receiving palliative chemotherapy. Soc. Sci. Med.35(12), 1505–1509 (1992).
  • Liu G , FranssenE, FitchMI, WarnerE. Patient preferences for oral versus intravenous palliative chemotherapy. J. Clin. Oncol.15(1), 110–115 (1997).
  • Pasquier E , KavallarisM, AndreN. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol.7(8), 455–465 (2010).
  • Irshad S . MN. Considerations when choosing oral chemotherapy: identifying and responding to patient need. Eur. J. Cancer Care19(Suppl. 1), 5–11 (2010).
  • Terwogt JM , SchellensJH, HuininkWW, BeijnenJH. Clinical pharmacology of anticancer agents in relation to formulations and administration routes. Cancer Treat. Rev.25(2), 83–101 (1999).
  • Kuppens IE , BreedveldP, BeijnenJH, SchellensJH. Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest.23(5), 443–464 (2005).
  • Washington N , WashingtonC, WilsonC. In: Physiological Pharmaceutics: Barriers to Drug Absorption. Taylor and Francis Group, London, UK (2011).
  • Zhang Y , BenetLZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet.40(3), 159–168 (2001).
  • Thummel KE . Gut instincts: CYP3A4 and intestinal drug metabolism. J. Clin. Invest.117(11), 3173–3176 (2007).
  • Cai Z , WangY, ZhuLJ, LiuZQ. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr. Drug Metab.11(2), 197–207 (2010).
  • Roger E , LagarceF, GarcionE, BenoitJP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond.)5(2), 287–306 (2010).
  • Bansal T , AkhtarN, JaggiM, KharRK, TalegaonkarS. Novel formulation approaches for optimising delivery of anticancer drugs based on Pgp modulation. Drug Discov. Today14(21–22), 1067–1074 (2009).
  • Villiers A . Sur la fermentation de la fécule par l‘action du ferment butyrique. Compt. Rend. Acad. Sci.112, 536–538 (1891).
  • Loftsson T , DucheneD. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm.329(1–2), 1–11 (2007).
  • Szejtli J . Past, present, and future of cyclodextrin research. Pure Appl. Chem.76(10), 1825–1845 (2004).
  • Uekama K , OtagiriM. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carrier Syst.3(1), 1–40 (1987).
  • Albers E , MullerBW. Cyclodextrin derivatives in pharmaceutics. Crit. Rev. Ther. Drug Carrier Syst.12(4), 311–337 (1995).
  • Uekama K . Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. (Tokyo)52(8), 900–915 (2004).
  • Szejtli J . Cyclodextrin Technology. Kluwer Academic Publisher, Dordrecht, The Netherlands (1988).
  • Loftsson T , BrewsterME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci.85(10), 1017–1025 (1996).
  • Rajewski RA , StellaVJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci.85(11), 1142–1169 (1996).
  • Duchene D , WouessidjeweD. Industrial uses of cyclodextrins and their derivatives. J. Coord. Chem.27(1–3), 223–236 (1992).
  • Thompson DO . Cyclodextrins – enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst.14(1), 1–104 (1997).
  • Frank DW , GrayJE, WeaverRN. Cyclodextrin nephrosis in the rat. Am. J. Pathol.83(2), 367–382 (1976).
  • Debouzy JC , FauvelleF, CrouzySet al. Mechanism of alpha-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J. Pharm. Sci. 87(1), 59–66 (1998).
  • Irie T , UekamaK. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci.86(2), 147–162 (1997).
  • Singh M , SharmaR, BanerjeeUC. Biotechnological applications of cyclodextrins. Biotechnol. Adv.20(5–6), 341–359 (2002).
  • Carrier RL , MillerLA, AhmedI. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release123(2), 78–99 (2007).
  • Hirayama F , UekamaK. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev.36(1), 125–141 (1999).
  • Challa R , AhujaA, AliJ, KharRK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech.6(2), E329–E357 (2005).
  • Amidon GL , LennernasH, ShahVP, CrisonJR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res.12(3), 413–420 (1995).
  • Yu LX , AmidonGL, PolliJEet al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19(7), 921–925 (2002).
  • Loftsson T , MassonM, BrewsterME. Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci.93(5), 1091–1099 (2004).
  • Loftsson T , MagnusdottirA, MassonM, SigurjonsdottirJF. Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci.91(11), 2307–2316 (2002).
  • Pitha J , HoshinoT, TorreslabandeiraJ, IrieT. Preparation of drug–hydroxypropylcyclodextrin complexes by a method using ethanol or aqueous ammonium hydroxide as co-solubilizers. Int. J. Pharm.80(2–3), 253–258 (1992).
  • Loftsson T , MagnusdottirA, MassonM. Self association and cyclodextrin solubilization of NSAIDs. J. Incl. Phenom. Macro.44(1–4), 213–218 (2002).
  • Davis ME , BrewsterME. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov.3(12), 1023–1035 (2004).
  • Avdeef A , BendelsS, TsinmanO, TsinmanK, KansyM. Solubility-excipient classification gradient maps. Pharm. Res.24(3), 530–545 (2007).
  • Park JS , KimCK. Solubility enhancers for oral drug delivery: can chemical structure manipulation be avoided? Am. J. Drug Deliv.2(2), 113–130 (2004).
  • Loftsson T , JarhoP, MassonM, JarvinenT. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv.2(2), 335–351 (2005).
  • Park K . Efficient oral delivery of paclitaxel using cyclodextrin complexes. J. Control. Release145(1), 1 (2010).
  • Cserhati T , ForgacsE, HolloJ. Interaction of taxol and other anticancer drugs with alpha-cyclodextrin. J. Pharm. Biomed. Anal.13(4–5), 533–541 (1995).
  • Badawy SIF , GhorabMM, AdeyeyeCM. Bioavailability of danazol-hydroxypropyl-beta-cylodextrin complex by different routes of administration. Int. J. Pharm.145(1–2), 137–143 (1996).
  • Madan J , DhimanN, ParmarVKet al. Inclusion complexes of noscapine in beta-cyclodextrin offer better solubility and improved pharmacokinetics. Cancer Chemoth. Pharmacol. 65(3), 537–548 (2010).
  • Yavuz B , BilensoyE, VuralI, SumnuM. Alternative oral exemestane formulation: improved dissolution and permeation. Int. J. Pharm.398(1–2), 137–145 (2010).
  • Yavuz B , SarisozenC, VuralI, BilensoyE, SumnuM. An alternative cyclodextrin based formulation for oral anticancer drug exemestane: in vitro and cell culture studies. J. Control. Release148(1), e83–84 (2010).
  • Kikuchi M , HirayamaF, UekamaK. Improvement of chemical instability of carmoful in beta-cyclodextrin solid complex by utilizing some organic acids. Chem. Pharm. Bull. (Tokyo)35(1), 315–319 (1987).
  • Piette M , EvrardB, FrankenneFet al. Pharmacokinetic study of a new synthetic MMP inhibitor (Ro 28–2653) after IV and oral administration of cyclodextrin solutions. Eur. J. Pharm. Sci. 28(3), 189–195 (2006).
  • Nakanishi K , NadaiT, MasadaM, MiyajimaK. Effect of cyclodextrins on biological membrane. II. Mechanism of enhancement on the intestinal absorption of non-absorbable drug by cyclodextrins. Chem. Pharm. Bull. (Tokyo)40(5), 1252–1256 (1992).
  • Gottesman MM , PastanI. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem.62, 385–427 (1993).
  • Fenyvesi F , FenyvesiE, SzenteLet al. Pgp inhibition by membrane cholesterol modulation. Eur. J. Pharm. Sci. 34(4–5), 236–242 (2008).
  • Ishikawa M , YoshiiH, FurutaT. Interaction of modified cyclodextrins with cytochrome P-450. Biosci. Biotechnol. Biochem.69(1), 246–248 (2005).
  • Garrigues A , EscargueilAE, OrlowskiS. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc. Natl Acad. Sci. USA99(16), 10347–10352 (2002).
  • Arima H , YunomaeK, HirayamaF, UekamaK. Contribution of Pgp to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J. Pharmacol. Exp. Ther.297(2), 547–555 (2001).
  • Pathak SM , MusmadeP, DengleSet al. Enhanced oral absorption of saquinavir with methyl-beta-cyclodextrin-preparation and in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 41(3–4), 440–451 (2010).
  • Fenyvesi F , KissT, FenyvesiEet al. Randomly methylated beta-cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco-2 cell monolayer. J. Pharm. Sci. 100(11), 4734–4744 (2011).
  • Munoz M , DeschenauxR, ColemanAW. Observation of microscopic patterning at the air water interface by mixtures of amphiphilic cyclodextrins: a compression isotherm and Brewster angle microscopy study. J. Phys. Org. Chem.12(5), 364–369 (1999).
  • Bilensoy E , DoganL, SenM, HincalA. Complexation behavior of antiestrogen drug tamoxifen citrate with natural and modified beta-cyclodextrins. J. Incl. Phenom. Macro.57(1–4), 651–655 (2007).
  • Duchene D , PonchelG, WouessidjeweD. Cyclodextrins in targeting. Application to nanoparticles. Adv. Drug Deliv. Rev.36(1), 29–40 (1999).
  • Duchene D , WouessidjeweD, PonchelG. Cyclodextrins and carrier systems. J. Control. Release62(1–2), 263–268 (1999).
  • Memisoglu-Bilensoy E , VuralL, BochotAet al. Tarnoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J. Control. Release 104(3), 489–496 (2005).
  • Cryan SA , HolohanA, DonohueR, DarcyR, O‘DriscollCM. Cell transfection with polycationic cyclodextrin vectors. Eur. J. Pharm. Sci.21(5), 625–633 (2004).
  • Bilensoy E , HincalAA. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin. Drug Deliv.6(11), 1161–1173 (2009).
  • Lemos-Senna E , WouessidjeweD, LesieurS, PuisieuxF, CourrazeG, DucheneD. Evaluation of the hydrophobic drug loading characteristics in nanoprecipitated amphiphilic cyclodextrin nanospheres. Pharm. Dev. Technol.3(1), 85–94 (1998).
  • Wouessidjewe D , SkibaM, LeroyLechatFet al. A new concept in drug delivery based on ‘skirt-shaped cyclodextrin aggregates‘ – present state and future prospects. Stp. Pharma. Sci. 6(1), 21–28 (1996).
  • Lemos-Senna E , WouessidjeweD, LesieurS, DucheneD. Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm.170(1), 119–128 (1998).
  • Lemos-Senna E , WouessidjeweD, DucheneD, LesieurS. Amphiphilic cyclodextrin nanospheres: particle solubilization and reconstitution by the action of a non-ionic detergent. Colloid. Surface. B10(5), 291–301 (1998).
  • Memisoglu E , BochotA, OzalpMet al. Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm. Res. 20(1), 117–125 (2003).
  • Memisoglu E , BochotA, SenM, DucheneD, HincalAA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic beta-cyclodextrins. Int. J. Pharm.251(1–2), 143–153 (2003).
  • Vural I , Memisoglu-BilensoyE, RenoirJMet al. Transcription efficiency of tamoxifen citrate-loaded beta-cyclodextrin nanoparticles. J. Drug Deliv. Sci. Technol. 15(5), 339–342 (2005).
  • Bilensoy E , GurkaynakO, ErtanM, SenM, HincalAA. Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci.97(4), 1519–1529 (2008).
  • Bilensoy E , GurkaynakO, DoganAL, HincalAA. Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery. Int. J. Pharm.347(1–2), 163–170 (2008).
  • Cirpanli Y , BilensoyE, DoganAL, CalisS. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur. J. Pharm. Biopharm.73(1), 82–89 (2009).
  • Cirpanli Y , AllardE, PassiraniCet al. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int. J. Pharm. 403(1–2), 201–206 (2011).
  • Quaglia F , OstacoloL, MazzagliaAet al. The intracellular effects of non-ionic amphiphilic cyclodextrin nanoparticles in the delivery of anticancer drugs. Biomaterials 30(3), 374–382 (2009).
  • Sortino S , MazzagliaA, ScolaroLMet al. Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as carrier-sensitizer system in photodynamic cancer therapy. Biomaterials 27(23), 4256–4265 (2006).
  • Tsuruo T , IidaH, TsukagoshiS, SakuraiY. Overcoming of vincristine resistance in p388 leukemia in vivo and in vitro through enhanced cyto-toxicity of vincristine and vinblastine by verapamil. Cancer Res.41(5), 1967–1972 (1981).
  • van Asperen J , van Tellingen O, van der Valk MA, Rozenhart M, Beijnen JH. Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporin A. Clin. Cancer Res.4(10), 2293–2297 (1998).
  • Bardelmeijer HA , BeijnenJH, BrouwerKRet al. Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin. Cancer Res. 6(11), 4416–4421 (2000).
  • Dong YC , FengSS. Poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials26(30), 6068–6076 (2005).
  • Woo JS , LeeCH, ShimCK, HwangSJ. Enhanced oral bioavailability of paclitaxel by coadministration of the Pgp inhibitor KR30031. Pharm. Res.20(1), 24–30 (2003).
  • Ponchel G , IracheJM. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliver. Rev.34(2–3), 191–219 (1998).
  • Woodley J . Bioadhesion – new possibilities for drug administration? Clin. Pharmacokinet.40(2), 77–84 (2001).
  • Bernkop-Schnürch A . Mucoadhesive systems in oral drug delivery. Drug Discov. Today Technol.2(1), 83–87 (2005).
  • Florence AT , HilleryAM, HussainN, JaniPU. Factors affecting the oral uptake and translocation of polystyrene nanoparticles – histological and analytical evidence. J. Drug Target.3(1), 65–70 (1995).
  • Bertholon I , PonchelG, LabarreD, CouvreurP, VauthierC. Bioadhesive properties of poly(alkylcyanoacrylate) nanoparticles coated with polysaccharide. J. Nanosci. Nanotechnol.6(9–10), 3102–3109 (2006).
  • Chen J , YangWL, LiGet al. Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J. Gastroentero. 10(1), 112–116 (2004).
  • Feng SS , MeiL, AnithaP, GanCW, ZhouWY. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials30(19), 3297–3306 (2009).
  • Arangoa MA , CampaneroMA, RenedoMJ, PonchelG, IracheJM. Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics. Pharm. Res.18(11), 1521–1527 (2001).
  • Arbos P , CampaneroMA, ArangoaMA, IracheJM. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. J. Control. Release96(1), 55–65 (2004).
  • Arbos P , CampaneroMA, ArnangoaMA, RenedoMJ, IracheJM. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J. Control. Release89(1), 19–30 (2003).
  • Lamprecht A , SchaferU, LehrCM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res.18(6), 788–793 (2001).
  • Montisci MJ , DembriA, GiovannuciGet al. Gastrointestinal transit and mucoadhesion of colloidal suspensions of Lycopersicon esculentum L. and Lotus tetragonolobus lectin-PLA microsphere conjugates in rats. Pharm. Res. 18(6), 829–837 (2001).
  • Arbos P , ArangoaMA, CampaneroMA, IracheJM. Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. Int. J. Pharm.242(1–2), 129–136 (2002).
  • Salman HH , GamazoC, CampaneroMA, IracheJM. Bioadhesive mannosylated nanoparticles for oral drug delivery. J. Nanosci. Nanotechnol.6(9–10), 3203–3209 (2006).
  • Salman HH , GamazoC, AguerosM, IracheJM. Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles. Vaccine25(48), 8123–8132 (2007).
  • Llabot JM , SalmanH, MillottiGet al. Bioadhesive properties of poly(anhydride) nanoparticles coated with different molecular weights chitosan. J. Microencapsul. 28(5), 455–463 (2011).
  • Agueros M , AresesP, CampaneroMAet al. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles. Eur. J. Pharm. Sci. 37(3–4), 231–240 (2009).
  • Areses P , AgüerosMT, QuincocesGet al. Molecular imaging techniques to study the biodistribution of orally administered 99mTc-labelled naive and ligand-tagged nanoparticles. Mol. Imaging Biol. 13(6), 1215–1223 (2011).
  • Agueros M , ZabaletaV, EspuelasS, CampaneroMA, IracheJM. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J. Control. Release145(1), 2–8 (2010).
  • Sparano JA , WangML, MartinoSet al. Weekly paclitaxel in the adjuvant treatment of breast cancer. New Engl. J. Med. 358(16), 1663–1671 (2008).
  • Montana M , DucrosC, VerhaeghePet al. Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J. Chemother. 23(2), 59–66 (2011).
  • Sandler A , GrayR, PerryMCet al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Engl. J. Med. 355(24), 2542–2550 (2006).
  • Zhan M , TaoWY, PanSH, SunXY, JiangHC. Low-dose metronomic chemotherapy of paclitaxel synergizes with cetuximab to suppress human colon cancer xenografts. Anticancer Drug.20(5), 355–363 (2009).
  • Dhanikula AB , PanchagnulaR. Localized paclitaxel delivery. Int. J. Pharm.183(2), 85–100 (1999).
  • da Silveira AM , PonchelG, PuisieuxF, DucheneD. Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm. Res.15(7), 1051–1055 (1998).
  • Agueros M , Ruiz-GatonL, VauthierCet al. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci. 38(4), 405–413 (2009).
  • Calvo J , LavanderaJ, AgüerosM, IracheJ. Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone. Biomed. Microdevices13(6), 1015–1025 (2011).
  • Mooguee M , OmidiY, DavaranS. Synthesis and in vitro release of adriamycin from star-shaped poly(lactide-co-glycolide) nano- and microparticles. J. Pharm. Sci.99(8), 3389–3397 (2010).
  • Wang TW , ZhangCL, LiangXJ, LiangW, WuY. Hydroxypropyl-beta-cyclodextrin copolymers and their nanoparticles as doxorubicin delivery system. J. Pharm. Sci.100(3), 1067–1079 (2011).
  • McCormack B , GregoriadisG. Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J. Drug Target.2(5), 449–454 (1994).
  • Wang X , DengL, CaiLet al. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-β-cyclodextrin in liposome. J. Pharm. Sci. 100(8), 3357–3364 (2011).
  • Arima H , YunomaeK, MorikawaT, HirayamaF, UekamaK. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-beta-cyclodextrin on efflux function of Pgp and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm. Res.21(4), 625–634 (2004).
  • Uekama K . Pharmaceutical application of cyclodextrins as multi-functional drug carriers. Yakugaku Zasshi124(12), 909–935 (2004).
  • Bellanger N , PerlyB. NMR investigations of the conformation of new cyclodextrin-based amphiphilic transporters for hydrophobic drugs - molecular lollipops. J. Mol. Struct.273, 215–226 (1992).
  • Dodziuk H , ChmurskiK, JurczakJet al. A dynamic NMR study of self-inclusion of a pendant group in amphiphilic 6-thiophenyl-6-deoxycyclodextrins. J. Mol. Struct. 519, 33–36 (2000).
  • Kawabata Y , MatsumotoM, TanakaMet al. Formation and deposition of monolayers of amphiphilic beta-cyclodextrin derivatives. Chem. Lett. 11, 1933–1934 (1986).
  • Liu FY , KildsigDO, MitraAK. Complexation of 6-acyl-O-beta-cyclodextrin derivatives with steroids – effects of chain-length and substitution degree. Drug Dev. Ind. Pharm.18(15), 1599–1612 (1992).
  • Zhang P , LingCC, ColemanAW, ParrotlopezH, GalonsH. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face. Tetrahedron Lett.32(24), 2769–2770 (1991).
  • Zhang P , ParrotlopezH, TchoreloffPet al. Self-organizing systems based on amphiphilic cyclodextrin diesters. J. Phys. Org. Chem. 5(8), 518–528 (1992).
  • Lesieur S , CharonD, LesieurPet al. Phase behavior of fully hydrated DMPC-amphiphilic cyclodextrin systems. Chem. Phys. Lipids 106(2), 127–144 (2000).
  • Canceill J , JullienL, LacombeL, LehnJM. Channel-type molecular-structures. 2. synthesis of bouquet-shaped molecules based on a beta-cyclodextrin core. Helv. Chim. Acta75(3), 791–812 (1992).
  • Wenz G . Synthesis and characterization of some lipophilic per(2,6-di-O-alkyl)cyclomalto-oligosaccharides. Carbohyd. Res.214(2), 257–265 (1991).
  • Auzely-Velty R , Djedaini-PilardF, DesertS, PerlyB, ZembT. Micellization of hydrophobically modified cyclodextrins. 1. Micellar structure. Langmuir16(8), 3727–3734 (2000).
  • Mazzaglia A , AngeliniN, DarcyRet al. Novel heterotopic colloids of anionic porphyrins entangled in cationic amphiphilic cyclodextrins: spectroscopic investigation and intracellular delivery. Chem. Eur. J. 9(23), 5762–5769 (2003).
  • Matsumoto M , MatsuzawaY, NoguchiS, SakaiH, AbeM. Structure of hybrid Langmuir-Blodgett films of amphiphilic cyclodextrin and water-soluble azobenzene. Mol. Cryst. Liq. Cryst.425, 475–482 (2004).
  • Dubes A , BouchuD, LamartineR, Parrot-LopezH. An efficient regio-specific synthetic route to multiply substituted acyl-sulphated beta-cyclodextrins. Tetrahedron Lett.42(52), 9147–9151 (2001).
  • Granger CE , FelixCP, Parrot-LopezHP, LangloisBR. Fluorine containing beta-cyclodextrin: a new class of amphiphilic carriers. Tetrahedron Lett.41(48), 9257–9260 (2000).
  • Peroche S , DegobertG, PutauxJLet al. Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-beta-cyclodextrins. Eur. J. Pharm. Biopharm. 60(1), 123–131 (2005).
  • Skiba M , Skiba-LahianiM, ArnaudP. Design of nanocapsules based on novel fluorophilic cyclodextrin derivatives and their potential role in oxygen delivery. J. Incl. Phenom. Macro.44(1–4), 151–154 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.