500
Views
0
CrossRef citations to date
0
Altmetric
Review

Cell-based drug-delivery Platforms

, , &
Pages 25-41 | Published online: 19 Dec 2011

References

  • Ravi Kumar MN . Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci.3(2), 234–258 (2000).
  • Yoo JW , IrvineDJ, DischerDE, MitragotriS. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov10(7), 521–535 (2011).
  • Rutherford MS , FutchWS, Jr., Schook LB. Acetylated low density lipoprotein and the delivery of immunomodulators to macrophages. Targeted Diagn. Ther.5, 201–223 (1991).
  • Wu F , WuenschSA, AzadnivM, EbrahimkhaniMR, CrispeIN. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses. Mol. Pharm.6(5), 1506–1517 (2009).
  • Slomkowski S , GoseckiM. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery. Curr. Pharm. Biotechnol. (2011) (Epub ahead of print).
  • Del Pozo-Rodriguez A , DelgadoD, SolinisMA, GasconAR. Lipid nanoparticles as vehicles for macromolecules: nucleic acids and peptides. Recent Pat. Drug Deliv. Formul.5(3), 214–226 (2011).
  • Wu TL , ZhouD. Viral delivery for gene therapy against cell movement in cancer. Adv. Drug Deliv. Rev.63(8), 671–677 (2011).
  • Rapti K , ChaanineAH, HajjarRJ. Targeted gene therapy for the treatment of heart failure. Can. J. Cardiol27(3), 265–283 (2011).
  • Millan CG , MarineroML, CastanedaAZ, LanaoJM. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Release95(1), 27–49 (2004).
  • Hoffman J . On red blood cells, hemolysis and resealed ghosts. in: The Use of Resealed Erythrocytes as Carriers and Bioreactors, Magnani M, Deloach JR (Eds.). Plenum Press, NY, USA, 1–15 (1992).
  • Hamidi M , TajerzadehH. Carrier erythrocytes: an overview. Drug Deliv.10(1), 9–20 (2003).
  • Jalava K , HenselA, SzostakM, ReschS, LubitzW. Bacterial ghosts as vaccine candidates for veterinary applications. J. Control. Release85(1–3), 17–25 (2002).
  • Huter V , SzostakMP, GampferJet al. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release 61(1–2), 51–63 (1999).
  • Lubitz W . Bacterial ghosts as carrier and targeting systems. Expert Opin. Biol. Ther.1(5), 765–771 (2001).
  • Paukner S , StiedlT, KudelaP, BizikJ, Al Laham F, Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert Opin. Drug Deliv.3(1), 11–22 (2006).
  • Altaner C . Prodrug cancer gene therapy. Cancer Lett.270(2), 191–201 (2008).
  • Aboody KS , NajbauerJ, DanksMK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther.15(10), 739–752 (2008).
  • Lanao JM . Biological carrier systems. Advances for drug and gene delivery. G.I.T. Lab. J. Europe5, 36–39 (2006).
  • Smits EL , AnguilleS, CoolsN, BernemanZN, Van Tendeloo VF. Dendritic cell-based cancer gene therapy. Hum. Gene Ther.20(10), 1106–1118 (2009).
  • Breckpot K , EscorsD. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr. Metab. Immune Disord. Drug Targets9(4), 328–343 (2009).
  • Tuyaerts S , AertsJL, CorthalsJet al. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol. Immunother. 56(10), 1513–1537 (2007).
  • Ma J , GalloJM. Delivery of cytotoxic drugs from carrier cells to tumour cells by apoptosis. Apoptosis3(3), 195–202 (1998).
  • Shao J , DehavenJ, LammDet al. A cell-based drug delivery system for lung targeting: II. Therapeutic activities on B16–F10 melanoma in mouse lungs. Drug Deliv. 8(2), 71–76 (2001).
  • Ong CT , BabalolaCP, NightingaleCH, NicolauDP. Penetration, efflux and intracellular activity of tigecycline in human polymorphonuclear neutrophils (PMNs). J. Antimicrob. Chemother.56(3), 498–501 (2005).
  • Manabe T , OkinoH, MaeyamaRet al. Novel strategic therapeutic approaches for prevention of local recurrence of pancreatic cancer after resection: trans-tissue, sustained local drug-delivery systems. J. Control. Release 100(3), 317–330 (2004).
  • Lanao JM , SayaleroML. Cells and cell ghosts as drug carriers. In: Nanoparticulates as Drug Carriers. Torchilin VP (Eds). Imperial College Press, London, UK, 329–348 (2006).
  • Gutierrez Millan C , Zarzuelo Castaneda A, Sayalero Marinero ML, Lanao JM. Factors associated with the performance of carrier erythrocytes obtained by hypotonic dialysis. Blood Cells Mol. Dis.33(2), 132–140 (2004).
  • Muzykantov VR . Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv.7(4), 403–427 (2010).
  • Kwon YM , ChungHS, MoonCet al. L-asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release139(3), 182–189 (2009).
  • Banz A , CremelM, RembertA, GodfrinY. In situ targeting of dendritic cells by antigen-loaded red blood cells: a novel approach to cancer immunotherapy. Vaccine28(17), 2965–2972 (2010).
  • Bossa F , LatianoA, RossiLet al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am. J. Gastroenterol. 103(10), 2509–2516 (2008).
  • Harisa GD , IbrahimMF, AlanaziFK. Characterization of human erythrocytes as potential carrier for pravastatin: an in vitro study. Int. J. Med. Sci.8(3), 222–230 (2011).
  • Pitt E , JohnsonCM, LewisDA, JennerDA, OffordRE. Encapsulation of drugs in intact erythrocytes: an intravenous delivery system. Biochem. Pharmacol.32(22), 3359–3368 (1983).
  • Ogiso T , IwakiM, OhtoriA. Encapsulation of dexamethasone in rabbit erythrocytes, the disposition in circulation and anti-inflammatory effect. J. Pharmacobiodyn.8(12), 1032–1040 (1985).
  • Hamidi M , TajerzadehH, DehpourAR, RouiniMR, Ejtemaee-MehrS. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv.8(4), 223–230 (2001).
  • Eichler HG , GasicS, DaumB, BacherS, StegerG. In vitro drug release from human carrier erythrocytes. Adv. Biosci.67, 11–15 (1987).
  • Briones E , ColinoCI, LanaoJM. Study of the factors influencing the encapsulation of zidovudine in rat erythrocytes. Int. J. Pharm.401(1–2), 41–46 (2010).
  • Gutierrez Millan C , BaxBE, CastanedaAZ, MarineroML, LanaoJM. In vitro studies of amikacin-loaded human carrier erythrocytes. Transl. Res.152(2), 59–66 (2008).
  • Bax BE , BainMD, TalbotPJ, Parker-WilliamsEJ, ChalmersRA. Survival of human carrier erythrocytes in vivo. Clin. Sci. (Lond)96(2), 171–178 (1999).
  • Magnani M , RossiL, FraternaleAet al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther. 9(11), 749–751 (2002).
  • Tonetti M , AstroffAB, SatterfieldW, De Flora A, Benatti U, Deloach JR. Pharmacokinetic properties of doxorubicin encapsulated in glutaraldehyde-treated canine erythrocytes. Am. J. Vet. Res.52(10), 1630–1635 (1991).
  • Skorokhod O , KulikovaEV, GalkinaNMet al. Doxorubicin pharmacokinetics in lymphoma patients treated with doxorubicin-loaded eythrocytes. Haematologica 92(4), 570–571 (2007).
  • Yuan SH , GeWH, HuoJ, WangXH. Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers. Fund Am. Clin. Pharmacol.23(2), 189–196 (2009).
  • Luo X , XuX, WangXH, ZhuSJ, GeWH. Study of Erythrocyte as carrier to prolong morphine‘s duration of action. J. NanJing Univ. (Nat. Sci.)39, 547–553 (2003).
  • Wang GP , GuanYS, JinXRet al. Development of novel 5-fluorouracil carrier erythrocyte with pharmacokinetics and potent antitumor activity in mice bearing malignant ascites. J. Gastroenterol. Hepatol. 25(5), 985–990 (2010).
  • Lizano C , PerezMT, PinillaM. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci.68(17), 2001–2016 (2001).
  • Alvarez FJ , HerraezA, MurcianoJC, JordanJA, DiezJC, TejedorMC. In vivo survival and organ uptake of loaded carrier rat erythrocytes. J. Biochem.120(2), 286–291 (1996).
  • Gutierrez Millan C , Zarzuelo Castaneda A, Gonzalez Lopez F, Sayalero Marinero ML, Lanao JM. Pharmacokinetics and biodistribution of amikacin encapsulated in carrier erythrocytes. J. Antimicrob. Chemo. Ther.61(2), 375–381 (2008).
  • Briones E , ColinoCI, MillanCG, LanaoJM. Increasing the selectivity of amikacin in rat peritoneal macrophages using carrier erythrocytes. Eur. J. Pharm. Sci.38(4), 320–324 (2009).
  • Rossi L , BrandiG, MalatestaMet al. Effect of listeriolysin O-loaded erythrocytes on Mycobacterium avium replication within macrophages. J. Antimicrob Chemo. Ther. 53(5), 863–866 (2004).
  • Mishra PR , JainNK. Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. ‘A study on the rat‘. Int. J. Pharm.231(2), 145–153 (2002).
  • Jordan JA , AlvarezFJ, LoteroLA, HerraezA, DiezJC, TejedorMC. In vitro phagocytosis of carrier mouse red blood cells is increased by Band 3 cross-linking or diamide treatment. Biotechnol. Appl. Biochem.34(3), 143–149 (2001).
  • Lotero LA , JordanJA, OlmosG, AlvarezFJ, TejedorMC, DiezJC. Differential in vitro and in vivo behavior of mouse ascorbate/Fe3+ and diamide oxidized erythrocytes. Biosci. Rep.21(6), 857–871 (2001).
  • Kim SH , KimEJ, HouJHet al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials 30(5), 959–967 (2009).
  • Mishra PR , JainNK. Surface modified methotrexate loaded erythrocytes for enhanced macrophage uptake. J. Drug Target8(4), 217–224 (2000).
  • Shavi GV , DoijadRC, DeshpandePBet al. Erythrocytes as carrier for prednisolone: in vitro and in vivo evaluation. Pak. J. Pharm. Sci. 23(2), 194–200 (2010).
  • Kruse CA , FreehaufCL, PatelKR, BaldeschwielerJD. Mouse erythrocyte carriers osmotically loaded with methotrexate. Biotechnol. Appl. Biochem.9(2), 123–140 (1987).
  • Lotero LA , OlmosG, DiezJC. Delivery to macrophages and toxic action of etoposide carried in mouse red blood cells. Biochim. Biophys. Acta.1620(1–3), 160–166 (2003).
  • Zocchi E , TonettiM, PolvaniC, GuidaL, BenattiU, De Flora A. In vivo liver and lung targeting of adriamycin encapsulated in glutaraldehyde-treated murine erythrocytes. Biotechnol. Appl. Biochem.10(6), 555–562 (1988).
  • Briones E , ColinoCI, LanaoJM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release125(3), 210–227 (2008).
  • Alanazi F . Pravastatin provides antioxidant activity and protection of erythrocytes loaded Primaquine. Int. J. Med. Sci.7(6), 358–365 (2010).
  • Staedtke V , BrahlerM, MullerAet al. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small6(1), 96–103 (2010).
  • Rossi L , SerafiniS, CeneriniLet al. Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol. Appl. Biochem. 33(Pt 2), 85–89 (2001).
  • Castro M , KnafelzD, RossiLet al. Periodic treatment with autologous erythrocytes loaded with dexamethasone 21-phosphate for fistulizing pediatric Crohn‘s disease: case report. J. Pediatr. Gastroenterol. Nutr. 42(3), 313–315 (2006).
  • Rossi L , CastroM, D‘orioFet al. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol. Dis. 33(1), 57–63 (2004).
  • Lucidi V , TozziAE, BellaS, TurchettaA. A pilot trial on safety and efficacy of erythrocyte-mediated steroid treatment in CF patients. BMC Pediatr.6, 17 (2006).
  • Annese V , LatianoA, RossiLet al. The polymorphism of multi-drug resistance 1 gene (MDR1) does not influence the pharmacokinetics of dexamethasone loaded into autologous erythrocytes of patients with inflammatory bowel disease. Eur. Rev. Med. Pharmacol. Sci. 10(1), 27–31 (2006).
  • Hamidi M , AzimiK, Mohammadi-SamaniS. Co-encapsulation of a drug with a protein in erythrocytes for improved drug loading and release: phenytoin and bovine serum albumin (BSA). J. Pharm. Pharm. Sci.14(1), 46–59 (2011).
  • Noël-Hocquet S , JabbouriS, LazarS, MaunierJC, GuillaumetG, RoparsC. Erythrocytes as carriers of new anti-opioid prodrugs: in vitro studies. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326), Magnani M, De Loach JR (Eds.). Plenum Press, New York, USA, 215–221 (1992).
  • Zaitsev S , SpitzerD, MurcianoJCet al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood 115(25), 5241–5248 (2010).
  • Hamidi M , RafieiP, AzadiA, Mohammadi-SamaniS. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J. Pharm. Sci.100(5), 1702–1711 (2011).
  • Hudson LD , FiddlerMB, DesnickRJ. Immunologic aspects of enzyme replacement therapy. An evaluation of the immune response to unentrapped, erythrocyte- and liposome-entrapped enzyme in C3H/HeJ Gush mice. Birth Defects Orig. Artic. Ser.16(1), 163–178 (1980).
  • Kravtzoff R , DesboisI, LamagnereJPet al. Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur. J. Clin. Pharmacol. 49(6), 465–470 (1996).
  • Domenech C , ThomasX, ChabaudSet al. L-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–2001 randomized trial. Br. J. Haematol.153(1), 58–65 (2011).
  • Thomas X , CannasG, ChelghoumY, GougounonA. Therapeutic alternatives to native L-asparaginase in the treatment of adult acute lymphoblastic leukemia. Bull. Cancer97(9), 1105–1117 (2010).
  • Kravtzoff R , RoparsC, LaguerreM, MuhJP, ChassaigneM. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in vivo studies. J. Pharm. Pharmacol.42(7), 473–476 (1990).
  • Naqi A , DeloachJR, AndrewsK, SatterfieldW, KeelingM. Determination of parameters for enzyme therapy using L-asparaginase entrapped in canine erythrocytes. Biotechnol. Appl. Biochem.10(4), 365–372 (1988).
  • Updike SJ . Entrapment of L-asparaginase in red blood cells. A strategy to improve treatment of acute lymphoblastic leukemia. Bibl. Haematol.51, 65–74 (1985).
  • Rossi L , BianchiM, MagnaniM. Increased glucose metabolism by enzyme-loaded erythrocytes in vitro and in vivo normalization of hyperglycemia in diabetic mice. Biotechnol. Appl. Biochem.15(2), 207–216 (1992).
  • Lizano C , SanzS, LuqueJ, PinillaM. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim. Biophys. Acta.1425(2), 328–336 (1998).
  • Ninfali P , RossiL, BaroncianiL, RoparsC, MagnaniM. Acetaldehyde oxidation by aldehyde dehydrogenase loaded erythrocytes. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326), Magnani M, De Loach JR (Eds). Plenum Press, NY, USA, 165–173 (1992).
  • Muthuvel A , RajamaniR, ManikandanS, SheeladeviR. Detoxification of formate by formate dehydrogenase-loaded erythrocytes and carbicarb in folate-deficient methanol-intoxicated rats. Clin. Chim Acta.367(1–2), 162–169 (2006).
  • Magnani M , FaziA, ManganiF, RossiL, ManciniU. Methanol detoxification by enzyme-loaded erythrocytes. Biotechnol. Appl. Biochem.18( Pt 3), 217–226 (1993).
  • Sanz S , LizanoC, LuqueJ, PinillaM. In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by a hypotonic dialysis procedure. Life Sci.65(26), 2781–2789 (1999).
  • Cannon EP , LeungP, HawkinsA, PetrikovicsI, DeloachJ, WayJL. Antagonism of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanese and sodium thiosulfate. J. Toxicol. Environ. Health41(3), 267–274 (1994).
  • Petrikovics I , PeiL, McguinnWD, CannonEP, WayJL. Encapsulation of rhodanese and organic thiosulfonates by mouse erythrocytes. Fundam. Appl. Toxicol.23(1), 70–75 (1994).
  • Magnani M , ManciniU, BianchiM, FaziA. Comparision of uricase-bound and uricase-loaded erythrocytes as bioreactors for uric acid degradation. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326). Magnani M, De Loach JR (Eds). Plenum Press, NY, USA, 189–194 (1992).
  • Ito Y , OgisoT, IwakiM, AtagoH. Encapsulation of human urokinase in rabbit erythrocytes and its disposition in the circulation system in rabbits. J. Pharmacobiodyn.10(10), 550–556 (1987).
  • Garin M , RossiL, LuqueJ, MagnaniM. Lactate catabolism by enzyme-loaded red blood cells. Biotechnol. Appl. Biochem.22(Pt 3), 295–303 (1995).
  • Adriaenssens K , KarcherD, MarescauB, Van Broeckhoven C, Lowenthal A, Terheggen HC. Hyperargininemia: the rat as a model for the human disease and the comparative response to enzyme replacement therapy with free arginase and arginase-loaded erythrocytes in vivo. Int. J. Biochem.16(7), 779–786 (1984).
  • Pei L , OmburoG, McguinnWDet al. Encapsulation of phosphotriesterase within murine erythrocytes. Toxicol. Appl. Pharmacol. 124(2), 296–301 (1994).
  • Bustos NL , BatlleAM. Enzyme replacement therapy in porphyrias – V. In vivo correction of delta-aminolaevulinate dehydratase defective in erythrocytes in lead intoxicated animals by enzyme-loaded red blood cell ghosts. Drug Des. Deliv.5(2), 125–131 (1989).
  • Hamarat Baysal S , UslanAH. In vitro study of urease/AlaDH enzyme system encapsulated into human erythrocytes and research into its medical applications. Artif. Cells Blood Substit. Immobil. Biotechnol.30(1), 71–77 (2002).
  • Bax BE , BainMD, FairbanksLD, SimmondsHA, WebsterAD, ChalmersRA. Carrier erythrocyte entrapped adenosine deaminase therapy in adenosine deaminase deficiency. Adv. Exp Med. Biol486, 47–50 (2000).
  • Flynn G , HackettTJ, MchaleL, MchaleAP. Encapsulation of the thrombolytic enzyme, brinase, in photosensitized erythrocytes: a novel thrombolytic system based on photodynamic activation. J. Photochem. Photobiol. B26(2), 193–196 (1994).
  • Bax BE , BainMD, WardCP, FensomAH, ChalmersRA. The entrapment of mannose-terminated glucocerebrosidase (Alglucerase) in human carrier erythrocytes. Biochem. Soc. Trans.24(3), 441S (1996).
  • Moran NF , BainMD, MuqitMM, BaxBE. Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology71(9), 686–688 (2008).
  • Biagiotti S , RossiL, BianchiMet al. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J. Control. Release 154(3), 306–313 (2011).
  • Rossi L , SerafiniS, AntonelliAet al. Macrophage depletion induced by clodronate-loaded erythrocytes. J. Drug Target 13(2), 99–111 (2005).
  • Lanao JM , BrionesE, ColinoCI. Recent advances in delivery systems for anti-HIV1 therapy. J. Drug Target15(1), 21–36 (2007).
  • Biagiotti S , RossiL, BianchiMet al. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J. Control. Release 154(3), 306–313 (2011).
  • Magnani M , RossiL, BrandiG, SchiavanoGF, MontroniM, PiedimonteG. Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc. Natl Acad. Sci. U S A89(14), 6477–6481 (1992).
  • Nielsen PE . Antisense peptide nucleic acids. Curr. Opin. Mol. Ther.2(3), 282–287 (2000).
  • Chiarantini L , CerasiA, FraternaleAet al. Inhibition of macrophage iNOS by selective targeting of antisense PNA. Biochemistry 41(26), 8471–8477 (2002).
  • Fraternale A , PaolettiMF, CasabiancaAet al. Erythrocytes as carriers of antisense PNA addressed against HIV-1 gag-pol transframe domain. J. Drug Target 17(4), 278–285 (2009).
  • Fraternale A , CasabiancaA, TonelliA, ChiarantiniL, BrandiG, MagnaniM. New drug combinations for the treatment of murine AIDS and macrophage protection. Eur. J. Clin. Invest31(3), 248–252 (2001).
  • Fraternale A , CasabiancaA, RossiLet al. Erythrocytes as carriers of reduced glutathione (GSH) in the treatment of retroviral infections. J. Antimicrob Chemother. 52(4), 551–554 (2003).
  • Rossi L , FranchettiP, PierigeFet al. Inhibition of HIV-1 replication in macrophages by a heterodinucleotide of lamivudine and tenofovir. J. Antimicrob Chemo. Ther. 59(4), 666–675 (2007).
  • Cervasi B , PaiardiniM, SerafiniSet al. Administration of fludarabine-loaded autologous red blood cells in simian immunodeficiency virus-infected sooty mangabeys depletes pSTAT-1-expressing macrophages and delays the rebound of viremia after suspension of antiretroviral therapy. J. Virol 80(21), 10335–10345 (2006).
  • Garin MI , LopezRM, LuqueJ. Pharmacokinetic properties and in vivo biological activity of recombinant human erythropoietin encapsulated in red blood cells. Cytokine9(1), 66–71 (1997).
  • Eichler HG , SchneiderW, RabergerG, BacherS, PabingerI. Erythrocytes as carriers for heparin. Preliminary in vitro and animal studies. Res. Exp. Med. (Berl.)186(6), 407–412 (1986).
  • Sinauridze EI , VuimoTA, KulikovaEV, Shmyrev,II, AtaullakhanovFI. A new drug form of blood coagulation factor IX: red blood cell-entrapped factor IX. Med. Sci. Monit.16(10), PI19–PI26 (2010).
  • Ganguly K , KrasikT, MedinillaSet al. Blood clearance and activity of erythrocyte-coupled fibrinolytics. J. Pharmacol. Exp Ther. 312(3), 1106–1113 (2005).
  • Murciano JC , HigaziAA, CinesDB, MuzykantovVR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J. Control. Release139(3), 190–196 (2009).
  • Gersh KC , ZaitsevS, MuzykantovV, CinesDB, WeiselJW. The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte-bound vs. free fibrinolytics. J. Thromb. Haemost.8(5), 1066–1074 (2010).
  • Feder R , NehushtaiR, MorA. Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides22(10), 1683–1690 (2001).
  • Olmos G , LoteroLA, TejedorMC, DiezJC. Delivery to macrophages of interleukin 3 loaded in mouse erythrocytes. Biosci. Rep.20(5), 399–410 (2000).
  • Polvani C , GaspariniA, BenattiUet al. Murine red blood cells as efficient carriers of three bacterial antigens for the production of specific and neutralizing antibodies. Biotechnol. Appl. Biochem. 14(3), 347–356 (1991).
  • Garin MI , LopezRM, SanzS, PinillaM, LuqueJ. Erythrocytes as carriers for recombinant human erythropoietin. Pharm. Res.13(6), 869–874 (1996).
  • Eichler HG , GasicS, BauerK, KornA, BacherS. In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin. Pharmacol. Ther.40(3), 300–303 (1986).
  • Murray AM , PearsonIF, FairbanksLD, ChalmersRA, BainMD, BaxBE. The mouse immune response to carrier erythrocyte entrapped antigens. Vaccine24(35–36), 6129–6139 (2006).
  • Hamidi M , ZareiN, ZarrinAH, Mohammadi-SamaniS. Preparation and in vitro characterization of carrier erythrocytes for vaccine delivery. Int. J. Pharm.338(1–2), 70–78 (2007).
  • Hamidi M , ZareiN, ZarrinA, Mohammadi-SamaniS. Preparation and validation of carrier human erythrocytes loaded by bovine serum albumin as a model antigen/protein. Drug Deliv.14(5), 295–300 (2007).
  • Hamidi M , ZarrinAH, ForoozeshM, ZareiN, Mohammadi-SamaniS. Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b. Int. J. Pharm.341(1–2), 125–133 (2007).
  • Byun HM , SuhD, YoonHet al. Erythrocyte ghost-mediated gene delivery for prolonged and blood-targeted expression. Gene Ther. 11(5), 492–496 (2004).
  • Doshi N , ZahrAS, BhaskarS, LahannJ, MitragotriS. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA106(51), 21495–21499 (2009).
  • Liu ZC , ChangTM. Long-term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG–PLA-nano artificial red blood cells. Artif Cells Blood Substit Immobil Biotechnol.36(6), 513–524 (2008).
  • Desilets J , LejeuneA, MercerJ, GicquaudC. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res.21(3B), 1741–1747 (2001).
  • Lejeune A , PoyetP, GaudreaultRC, GicquaudC. Nanoerythrosomes, a new derivative of erythrocyte ghost: III. Is phagocytosis involved in the mechanism of action? Anticancer Res.17(5A), 3599–3603 (1997).
  • Pouliot R , Saint-LaurentA, ChypreCet al. Spectroscopic characterization of nanoerythrosomes in the absence and presence of conjugated polyethyleneglycols: an FTIR and (31)P-NMR study. Biochim. Biophys. Acta. 1564(2), 317–324 (2002).
  • Witte A , WannerG, SulznerM, LubitzW. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol157(4), 381–388 (1992).
  • Marchart J , DropmannG, LechleitnerSet al. Pasteurella multocida- and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine 21(25–26), 3988–3997 (2003).
  • Witte A , WannerG, BlasiU, HalfmannG, SzostakM, LubitzW. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J. Bacteriol.172(7), 4109–4114 (1990).
  • Paukner S , KohlG, LubitzW. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J. Control. Release94(1), 63–74 (2004).
  • Szostak MP , HenselA, EkoFOet al. Bacterial ghosts: non-living candidate vaccines. J. Biotechnol. 44(1–3), 161–170 (1996).
  • Langemann T , KollerVJ, MuhammadA, KudelaP, MayrUB, LubitzW. The bacterial ghost platform system: Production and applications. Bioeng. Bugs1(5), 326–336 (2010).
  • Tabrizi CA , WalcherP, MayrUBet al. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol. 15(6), 530–537 (2004).
  • Mayr UB , WalcherP, AzimpourC, RiedmannE, HallerC, LubitzW. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev.57(9), 1381–1391 (2005).
  • Witte A , LubitzW. Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli. Eur. J. Biochem.180(2), 393–398 (1989).
  • Kwon SR , KangYJ, LeeDJet al. Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and Staphylococcal nuclease A gene. Mol. Biotechnol. 42(2), 154–159 (2009).
  • Jalava K , EkoFO, RiedmannE, LubitzW. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev. Vaccines2(1), 45–51 (2003).
  • Yu SY , PengW, SiWet al. Enhancement of bacteriolysis of Shuffled phage PhiX174 gene E. Virol J. 8, 206 (2011).
  • Resch S , GruberK, WannerG, SlaterS, DennisD, LubitzW. Aqueous release and purification of poly(beta-hydroxybutyrate) from Escherichia coli. J. Biotechnol.65(2–3), 173–182 (1998).
  • Paukner S , KohlG, JalavaK, LubitzW. Sealed bacterial ghosts – novel targeting vehicles for advanced drug delivery of water-soluble substances. J. Drug Target11(3), 151–161 (2003).
  • Lubitz W , WitteA, EkoFOet al. Extended recombinant bacterial ghost system. J. Biotechnol. 73(2–3), 261–273 (1999).
  • Paukner S , KudelaP, KohlG, SchlappT, FriedrichsS, LubitzW. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther.11(2), 215–223 (2005).
  • Haidinger W , SzostakMP, JechlingerW, LubitzW. Online monitoring of Escherichia coli ghost production. Appl. Environ. Microbiol.69(1), 468–474 (2003).
  • Haidinger W , SzostakMP, BeiskerW, LubitzW. Green fluorescent protein (GFP)-dependent separation of bacterial ghosts from intact cells by FACS. Cytometry44(2), 106–112 (2001).
  • Kudela P , KollerVJ, LubitzW. Bacterial ghosts (BGs) – advanced antigen and drug delivery system. Vaccine28(36), 5760–5767 (2010).
  • Haslberger AG , KohlG, FelnerovaD, MayrUB, Furst-LadaniS, LubitzW. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J. Biotechnol.83(1–2), 57–66 (2000).
  • Mader HJ , SzostakMP, HenselA, LubitzW, HaslbergerAG. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine15(2), 195–202 (1997).
  • Eko FO , WitteA, HuterVet al. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17(13–14), 1643–1649 (1999).
  • Mayr UB , HallerC, HaidingerWet al. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun. 73(8), 4810–4817 (2005).
  • Riedmann EM , KydJM, CrippsAW, LubitzW. Bacterial ghosts as adjuvant particles. Expert Rev. Vaccines6(2), 241–253 (2007).
  • Walcher P , MayrUB, Azimpour-TabriziCet al. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors. Expert Rev. Vaccines 3(6), 681–691 (2004).
  • Donnelly JJ , UlmerJB, ShiverJW, LiuMA. DNA vaccines. Annu. Rev. Immunol15, 617–648 (1997).
  • Felnerova D , KudelaP, BizikJet al. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit. 10(10), BR362–370 (2004).
  • Kudela P , PauknerS, MayrUBet al. Effective gene transfer to melanoma cells using bacterial ghosts. Cancer Lett. 262(1), 54–63 (2008).
  • Krishnan L , DicaireCJ, PatelGB, SprottGD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect. Immun.68(1), 54–63 (2000).
  • Sprott GD , PatelGB, KrishnanL. Archaeobacterial ether lipid liposomes as vaccine adjuvants. Methods Enzymol.373, 155–172 (2003).
  • Scholl I , Boltz-NitulescuG, Jensen-JarolimE. Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J. Control. Release104(1), 1–27 (2005).
  • Zhao Y , WangS. Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum. Gene Ther.21(6), 683–694 (2010).
  • Chiu AY , RaoMS. Cell-based therapy for neural disorders – anticipating challenges. Neurotherapeutics8(4), 744–752 (2011).
  • Dhara SK , MajumderA, DodlaMC, SticeSL. Nonviral gene delivery in neural progenitors derived from human pluripotent stem cells. Methods Mol. Biol767, 343–354 (2011).
  • Porada CD , ZanjaniED, Almeida-PoradG. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr. Stem Cell Res. Ther.1(3), 365–369 (2006).
  • Studeny M , MariniFC, DembinskiJLet al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst 96(21), 1593–1603 (2004).
  • Loebinger MR , SageEK, JanesSM. Mesenchymal stem cells as vectors for lung disease. Proc Am. Thorac. Soc.5(6), 711–716 (2008).
  • Min CK , KimBG, ParkG, ChoB, OhIH. IL-10-transduced bone marrow mesenchymal stem cells can attenuate the severity of acute graft-versus-host disease after experimental allogeneic stem cell transplantation. Bone Marrow Transplant39(10), 637–645 (2007).
  • Yang H , JooKI, ZieglerL, WangP. Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm. Res.26(6), 1432–1445 (2009).
  • Ehtesham M , KabosP, KabosovaA, NeumanT, BlackKL, YuJS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res.62(20), 5657–5663 (2002).
  • Park KI , HimesBT, StiegPE, TesslerA, FischerI, SnyderEY. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp. Neurol.199(1), 179–190 (2006).
  • Elzaouk L , MoellingK, PavlovicJ. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp. Dermatol.15(11), 865–874 (2006).
  • Yang SY , LiuH, ZhangJN. Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12. DNA Cell Biol.23(6), 381–389 (2004).
  • Frank RT , EdmistonM, KendallSEet al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 4(12), e8314 (2009).
  • Yip S , SabetrasekhR, SidmanRL, SnyderEY. Neural stem cells as novel cancer therapeutic vehicles. Eur. J. Cancer42(9), 1298–1308 (2006).
  • Ahmed AU , LesniakMS. Glioblastoma multiforme: can neural stem cells deliver the therapeutic payload and fulfill the clinical promise? Expert Rev. Neurother.11(6), 775–777 (2011).
  • Aboody KS , NajbauerJ, SchmidtNOet al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol 8(2), 119–126 (2006).
  • Dieterlen MT , WegnerF, SchwarzSCet al. Non-viral gene transfer by nucleofection allows stable gene expression in human neural progenitor cells. J. Neurosci. Methods 178(1), 15–23 (2009).
  • Scaife MD , NeschadimA, FowlerDH, MedinJA. Novel application of lentiviral vectors towards treatment of graft-versus-host disease. Expert Opin. Biol. Ther.9(6), 749–761 (2009).
  • Brenner S , MalechHL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim. Biophys. Acta.1640(1), 1–24 (2003).
  • Trobridge GD . Foamy virus vectors for gene transfer. Expert Opin. Biol. Ther.9(11), 1427–1436 (2009).
  • Su L , LeeR, BonyhadiMet al. Hematopoietic stem cell-based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood 89(7), 2283–2290 (1997).
  • Trobridge GD , WuRA, BeardBCet al. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS One 4(11), e7693 (2009).
  • Huber A , PadrunV, DeglonN, AebischerP, MohlerH, BoisonD. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc. Natl Acad. Sci. USA98(13), 7611–7616 (2001).
  • Boison D , HuberA, PadrunV, DeglonN, AebischerP, MohlerH. Seizure suppression by adenosine-releasing cells is independent of seizure frequency. Epilepsia43(8), 788–796 (2002).
  • Boison D . Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res.85(2–3), 131–141 (2009).
  • Sunkomat JN , GaballaMA. Stem cell therapy in ischemic heart disease. Cardiovasc. Drug Rev.21(4), 327–342 (2003).
  • Makar TK , TrislerD, BeverCTet al. Stem cell based delivery of IFN-beta reduces relapses in experimental autoimmune encephalomyelitis. J. Neuroimmunol 196(1–2), 67–81 (2008).
  • Peng LH , TsangSY, TabataY, GaoJQ. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration. J. Control. Release doi:10.1016/j.jconrel.2011.08.027 (2011) (Epub ahead of print).
  • Facca S , FerrandA, Mendoza-PalomaresCet al. Bone formation induced by growth factors embedded into the nanostructured particles. J. Biomed. Nanotechnol 7(3), 482–485 (2011).
  • Draube A , Klein-GonzalezN, MattheusSet al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6(4), e18801 (2011).
  • Tkachenko N , WojasK, TabarkiewiczJ, RolinskiJ. Generation of dendritic cells from human peripheral blood monocytes – comparison of different culture media. Folia. Histochem. Cytobiol43(1), 25–30 (2005).
  • Toscano MG , DelgadoM, KongW, MartinF, SkaricaM, GaneaD. Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol. Ther.18(5), 1035–1045 (2010).
  • Birkholz K , SchwenkertM, KellnerCet al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116(13), 2277–2285 (2010).
  • Breckpot K , HeirmanC, NeynsB, ThielemansK. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J. Gene Med.6(11), 1175–1188 (2004).
  • Van Nuffel AM , CorthalsJ, NeynsB, HeirmanC, ThielemansK, BonehillA. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol. Biol.629, 405–452 (2010).
  • Arce F , KochanG, BreckpotK, StephensonH, EscorsD. Selective activation of intracellular signalling pathways in dendritic cells for cancer immunotherapy. Anticancer Agents Med. Chem. (2011) (Epub ahead of print).
  • Puig-Kroger A , RellosoM, Fernandez-CapetilloOet al. Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 98(7), 2175–2182 (2001).
  • Escors D , LopesL, LinRet al. Targeting dendritic cell signaling to regulate the response to immunization. Blood 111(6), 3050–3061 (2008).
  • Arce F , BreckpotK, StephensonHet al. Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum. 63(1), 84–95 (2011).
  • Song XT , Evel-KablerK, ShenL, RollinsL, HuangXF, ChenSY. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat. Med.14(3), 258–265 (2008).
  • Breckpot K , Aerts-ToegaertC, HeirmanCet al. Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine. J. Immunol 182(2), 860–870 (2009).
  • Kool M , Van Loo G, Waelput W et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity35(1), 82–96 (2011).
  • Matmati M , JacquesP, MaelfaitJet al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43(9), 908–912 (2011).
  • Akazawa T , ShingaiM, SasaiMet al. Tumor immunotherapy using bone marrow-derived dendritic cells overexpressing Toll-like receptor adaptors. FEBS Lett. 581(18), 3334–3340 (2007).
  • Lambrecht BN . Dendritic cells and the regulation of the allergic immune response. Allergy60(3), 271–282 (2005).
  • Stoop JN , RobinsonJH, HilkensCM. Developing tolerogenic dendritic cell therapy for rheumatoid arthritis: what can we learn from mouse models? Ann. Rheum. Dis.70(9), 1526–1533 (2011).
  • Zhao Y , ZhangA, DuH, GuoS, NingB, YangS. Tolerogenic dendritic cells and rheumatoid arthritis: current status and perspectives. Rheumatol. Int. (2011) (Epub ahead of print).
  • Patham B , SimmonsGL, SubramanyaS. Advances in dendritic cell-based vaccines for HIV. Curr. Med. Chem.18(26), 3987–3994 (2011).

Website

  • Menon LG, Shi VJ, Carroll RS. Mesenchymal stromal cells as a drug delivery system. In: StemBook. Silberstein L (Ed.). The Stem Cell Research Community. Harvard Stem Cell Institute, Harvard University, USA. StemBook, 10.3824/stembook.1.35.1 (15 Jan 2009). www.stembook.org/node/534

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.