291
Views
0
CrossRef citations to date
0
Altmetric
Patent Review

Drug Delivery to the Brain Via the blood–brain Barrier: a Review of the Literature and Some Recent Patent Disclosures

Pages 311-327 | Published online: 09 Mar 2011

Bibliography

  • Pardridge WM . Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov. Today7(1), 5–7 (2002).
  • Pardridge WM . The blood–brain barrier: bottleneck in brain drug development. NeuroRx2(1), 3–14 (2005).
  • Alavijeh MS , ChishtyM, QaiserMZ, PalmerAM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx2(4), 554–571 (2005).
  • Nau R , SörgelF, EiffertH. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev.23(4), 858–883 (2010).
  • Spector R , JohansonCE. Vectorial ligand transport through mammalian choroid plexus. Pharm. Res.27(10), 2054–2062 (2010).
  • Jogani V , JinturkarK, VyasTK, MisraA. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat. Drug Deliv. Formul.2(1), 25–40 (2008).
  • Dhuria SV , HansonLR, Frey Ii WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci.99(4), 1654–1673.
  • Salvatore MF , AiY, FischerBet al. Point source concentration of GDNF may explain failure of Phase II clinical trial. Exp. Neurol. 202(2), 497–505 (2006).
  • Jones AR , ShustaEV. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm. Res.24(9), 1759–1771 (2007).
  • Potschka H . Targeting the brain – surmounting or bypassing the blood–brain barrier. Handb. Exp. Pharmacol.197, 411–431 (2010).
  • Gabathuler R . Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis.37(1), 48–57 (2010).
  • Wang BY , XiaAX, ChenPP, NiL, LiuFH, LiFZ. Blood–brain barrier transport of drug-loaded nanoparticle: research advances. J. Int. Pharm. Res.37(1), 40–42 (2010).
  • Ligade PC , JadhavKR, KadamVJ. Brain drug-delivery system: an overview. Curr. Drug Ther.5(2), 105–110 (2010).
  • Abbott NJ , PatabendigeAAK, DolmanDEM, YusofSR, BegleyDJ. Structure and function of the blood–brain barrier. Neurobiol. Dis.37(1), 13–25 (2010).
  • Pries AR , KueblerWM. Normal endothelium. Handb. Exp. Pharmacol.176(Part 1), 1–40 (2006).
  • Campbell M , KiangAS, KennaPFet al. RNAi-mediated reversible opening of the blood–brain barrier. J. Gene Med. 10(8), 930–947 (2008).
  • Campbell M , OzakiE, HumphriesP. Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opin. Drug Deliv.7(7), 859–869 (2010).
  • Wolburg H , NoellS, MackA, Wolburg-BuchholzK, Fallier-BeckerP. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res.335(1), 75–96 (2009).
  • Fischer H , GottschlichR, SeeligA. Blood–brain barrier permeation: molecular parameters governing passive diffusion. J. Membr. Biol.165(3), 201–211 (1998).
  • Seelig A , GerebtzoffG. Enhancement of drug absorption by noncharged detergents through membrane and P-glycoprotein binding. Expert Opin. Drug Metabol. Toxicol.2(5), 733–752 (2006).
  • Dallas S , MillerDS, BendayanR. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol. Rev.58(2), 140–161 (2006).
  • Miller DS . Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci.31, 246–254 (2010).
  • Tsuji A . Small-molecular drug transfer across the blood–brain barrier via carrier-mediated transport systems. NeuroRx2(1), 54–62 (2005).
  • Ricci M , BlasiP, GiovagnoliS, RossiC. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr. Med. Chem.13(15), 1757–1775 (2006).
  • Giacomini KM , HuangSM, TweedieDJet al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9(3), 215–236 (2010).
  • Pardridge WM . Biopharmaceutical drug targeting to the brain. J. Drug Target.18(3), 11 (2010).
  • Mahar Doan KM , HumphreysJE, WebsterLOet al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303(3), 1029–1037 (2002).
  • Thomas FC , TaskarK, RudrarajuVet al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26(11), 2486–2494 (2009).
  • Schnyder A , HuwylerJ. Drug transport to brain with targeted liposomes. NeuroRx2(1), 99–107 (2005).
  • Pardridge WM , TrigueroD, BuciakJ, YangJ. Evaluation of cationized rat albumin as a potential blood–brain barrier drug transport vector. J. Pharmacol. Exp. Ther.255(2), 893–899 (1990).
  • Frankel AD , PaboCO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell55(6), 1189–1193 (1988).
  • Schmidt N , MishraA, LaiGH, WongGCL. Arginine-rich cell-penetrating peptides. FEBS Lett.584(9), 1806–1813 (2010).
  • Wender PA , GalliherWC, GounEA, JonesLR, PillowTH. The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Deliv. Rev.60(4–5), 452–472 (2008).
  • Lee HJ , PardridgeWM. Pharmacokinetics and delivery of tat and t1-protein conjugates to tissues in vivo. Bioconjug. Chem.12(6), 995–999 (2001).
  • Jiang T , OlsonES, NguyenQT, RoyM, JenningsPA, TsienRY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl Acad. Sci. USA101(51), 17867–17872 (2004).
  • Pham W , ZhaoBQ, LoEH, MedarovaZ, RosenB, MooreA. Crossing the blood–brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. NeuroImage28(1), 287–292 (2005).
  • Dehouck B , FenartL, DehouckMP, PierceA, TorpierG, CecchelliR. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol.138(4), 877–889 (1997).
  • Fillebeen C , DescampsL, DehouckMPet al. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274(11), 7011–7017 (1999).
  • Demeule M , PoirierJ, JodoinJet al. High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J. Neurochem. 83(4), 924–933 (2002).
  • Demeule M , ReginaA, CheCet al. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 324(3), 1064–1072 (2008).
  • Abulrob A , ZhangJ, TanhaJ, MacKenzieR, StanimirovicD. Single domain antibodies as blood–brain barrier delivery vectors. Int. Congr. Ser.1277, 212–223 (2005).
  • Muruganandam A , TanhaJ, NarangS, StanimirovicD. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J.16(2), 240–242 (2002).
  • Tanha J , MuruganandamA, StanimirovicD. Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol. Med.89, 435–449 (2003).
  • Abulrob A , SprongH, Van Bergen En Henegouwen P, Stanimirovic D. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem.95(4), 1201–1214 (2005).
  • Rip J , SchenkGJ, De Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin. Drug Deliv.6(3), 227–237 (2009).
  • Shi N , ZhangY, ZhuC, BoadoRJ, PardridgeWM. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl Acad. Sci. USA98(22), 12754–12759 (2001).
  • Mishra V , MahorS, RawatAet al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J. Drug Target. 14(1), 45–53 (2006).
  • Ulbrich K , HekmataraT, HerbertE, KreuterJ. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm.71(2), 251–256 (2009).
  • Pardridge WM , BuciakJL, FridenPM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J. Pharmacol. Exp. Ther.259(1), 66–70 (1991).
  • Huwyler J , WuD, PardridgeWM. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl Acad. Sci. USA93, 14164–14169 (1996).
  • Gosk S , VermehrenC, StormG, MoosT. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J. Cereb. Blood Flow Metab.24(11), 1193–1204 (2004).
  • Zhang Y , PardridgeWM. Near complete rescue of experimental Parkinson‘s disease with intravenous, nonviral GDNF gene therapy. Pharm. Res.26(5), 1059–1063 (2009).
  • Boado RJ , ZhouQH, LuJZ, HuiEKW, PardridgeWM. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol. Pharm.7(1), 237–244 (2010).
  • Pardridge WM , KangYS, BuciakJL, YangJ. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood–brain barrier in vivo in the primate. Pharm. Res.12(6), 807–816 (1995).
  • Boado RJ , ZhangY, PardridgeWM. Humanization of antihuman insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol. Bioeng.96(2), 381–391 (2007).
  • Boado RJ , HuiEKW, LuJZ, ZhouQH, PardridgeWM. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J. Biotechnol.146(1–2), 84–91 (2010).
  • Davis B , MorrisT. Physiological parameters in laboratory animals and humans. Pharm. Res.10(7), 1093–1095 (1993).
  • Boado RJ , PardridgeWM. Comparison of blood–brain barrier transport of glial-derived neurotrophic factor (GDNF) and an IgG–GDNF fusion protein in the rhesus monkey. Drug Metab. Dispos.37(12), 2299–2304 (2009).
  • Pardridge WM , BoadoRJ. Pharmacokinetics and safety in rhesus monkeys of a monoclonal antibody–GDNF fusion protein for targeted blood–brain barrier delivery. Pharm. Res.26(10), 2227–2236 (2009).
  • Boado RJ , ZhangY, XiaCF, PardridgeWM. Fusion antibody for Alzheimer‘s disease with bidirectional transport across the blood–brain barrier and Aβ fibril disaggregation. Bioconjug. Chem.18(2), 447–455 (2007).
  • Pardridge WM . shRNA and siRNA delivery to the brain. Adv. Drug Deliv. Rev.59(2–3), 141–152 (2007).
  • Pardridge WM . Tyrosine hydroxylase replacement in experimental Parkinson‘s disease with transvascular gene therapy. NeuroRx2(1), 129–138 (2005).
  • Ulbrich K , KnoblochT, KreuterJ. Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J. Drug Target.19(2), 125–132 (2011).
  • Golden PL , MaccagnanTJ, PardridgeWM. Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J. Clin. Invest.99(1), 14–18 (1997).
  • Couce ME , GreenD, BrunettoA, LloydRV, BurgueraB. Limited brain access for leptin in obesity. Pituitary4(1–2), 101–110 (2001).
  • Kurrimbux D , GaffenZ, FarrellCL, MartinD, ThomasSA. The involvement of the blood–brain and the blood–cerebrospinal fluid barriers in the distribution of leptin into and out of the rat brain. Neuroscience123(2), 527–536 (2004).
  • Barrett GL , TrieuJ, NaimT. The identification of leptin-derived peptides that are taken up by the brain. Regul. Pept.155(1–3), 55–61 (2009).
  • Liu Y , LiJ, ShaoKet al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31(19), 5246–5257 (2010).
  • Banks WA , CleverCM, FarrellCL. Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice. Am. J. Physiol. Endocrinol. Metab.278(6), E1158–E1165 (2000).
  • Nykjaer A , WillnowTE. The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol.12(6), 273–280 (2002).
  • May P , WoldtE, MatzRL, BoucherP. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann. Med.39(3), 219–228 (2007).
  • Yepes M , SandkvistM, MooreEG, BuggeTH, StricklandDK, LawrenceDA. Tissue-type plasminogen activator induces opening of the blood–brain barrier via the LDL receptor-related protein. J. Clin. Invest.112(10), 1533–1540 (2003).
  • Lillis AP , Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev.88(3), 887–918 (2008).
  • Gosselet F , CandelaP, SevinE, BerezowskiV, CecchelliR, FenartL. Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood–brain barrier: use of an in vitro model. Brain Res.1249(C), 34–42 (2009).
  • Candela P , GosseletF, MillerFet al. Physiological pathway for low-density lipoproteins across the blood–brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 15(5–6), 254–264 (2008).
  • Tucker IG , FlorenceAT. Interactions of ionic and nonionic surfactants with plasma low density lipoprotein. J. Pharm. Pharmacol.35(11), 705–711 (1983).
  • Lacko AG , NairM, ProkaiL, McConarthyWJ. Prospects and challenges of the development of lipoprotein-based formulations for anticancer drugs. Expert Opin. Drug Deliv.4(6), 665–675 (2007).
  • Nikanjam M , BlakelyEA, BjornstadKA, ShuX, BudingerTF, ForteTM. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int. J. Pharm.328(1), 86–94 (2007).
  • Nikanjam M , GibbsAR, HuntCA, BudingerTF, ForteTM. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J. Control. Release124(3), 163–171 (2007).
  • Kreuter J , AlyautdinRN, KharkevichDA, IvanovAA. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res.674(1), 171–174 (1995).
  • Kreuter J . Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev.47(1), 65–81 (2001).
  • Kreuter J , ShamenkovD, PetrovVet al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target. 10(4), 317–325 (2002).
  • Olivier J -C. Drug transport to brain with targeted nanoparticles. NeuroRx2, 108–119 (2005).
  • Kim HR , AndrieuxK, GilSet al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins on receptor-mediated endocytosis. Biomacromolecules 8(3), 793–799 (2007).
  • Kim HR , GilS, AndrieuxKet al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol. Life Sci. 64(3), 356–364 (2007).
  • Gelperina S , MaksimenkoO, KhalanskyAet al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm. 74(2), 157–163 (2010).
  • Zensi A , BegleyD, PontikisCet al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 137(1), 78–86 (2009).
  • Zensi A , BegleyD, PontikisCet al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood–brain barrier and enter the rodent brain. J. Drug Target. 18(10), 842–848 (2010).
  • Spencer BJ , VermaIM. Targeted delivery of proteins across the blood–brain barrier. Proc. Natl Acad. Sci. USA104(18), 7594–7599 (2007).
  • Pan W , KastinAB, ZankelTC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J. Cell Sci.117(21), 5071–5078 (2004).
  • Gabathuler R , ArthurG, KennardMet al. Development of a potential protein vector (NeuroTrans) to deliver drugs across the blood–brain barrier. Int. Congr. Ser. 1277, 171–184 (2005).
  • Karkan D , PfeiferC, VitalisTZet al. A unique carrier for delivery of therapeutic compounds beyond the blood–brain barrier. PLoS ONE 3(6), e2469 (2008).
  • Huang R , KeW, HanLet al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J. Cereb. Blood Flow Metab. 29(12), 1914–1923 (2009).
  • Huang R , KeW, HanLet al. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res. Bull. 81(6), 600–604 (2010).
  • Huang R , KeW, LiuYet al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J. Neurol. Sci. 290(1–2), 123–130 (2010).
  • Demeule M , CurrieJC, BertrandYet al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain-delivery vector Angiopep-2. J. Neurochem. 106(4), 1534–1544 (2008).
  • Regina A , DemeuleM, CheCet al. Anti-tumor activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 155(2), 185–197 (2008).
  • Gabathuler R . Development of new peptide vectors for the transport of therapeutic across the blood–brain barrier. Ther. Deliv.1(4), 571–586 (2010).
  • Che C , YangG, ThiotCet al. New angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J. Med. Chem. 53(7), 2814–2824 (2010).
  • Ke W , ShaoK, HuangRet al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30(36), 6976–6985 (2009).
  • Kumar P , WuH, McBrideJLet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149), 39–43 (2007).
  • Lafon M . Rabies virus receptors. J. Neurovirol.11(1), 82–87 (2005).
  • Wessler I , KirkpatrickCJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol.154(8), 1558–1571 (2008).
  • Gotti C , ClementiF. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol.74(6), 363–396 (2004).
  • Abbruscato TJ , LopezSP, MarkKS, HawkinsBT, DavisTP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci.91(12), 2525–2538 (2002).
  • Pulford B , ReimN, BellAet al. Liposome-siRNA-peptide complexes cross the blood–brain barrier and significantly decrease PrPC on neuronal cells and PrPRES in infected cell cultures. PLoS ONE 5(6), 1–13 (2010).
  • Liu Y , HuangR, HanLet al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30(25), 4195–4202 (2009).
  • Wilkins ME , LiX, SmartTG. Tracking cell surface GABAB receptors using an α-bungarotoxin tag. J. Biol. Chem.283(50), 34745–34752 (2008).
  • Zhang Y , LiuGQ. Sodium and chloride-dependent high and low-affinity uptakes of GABA by brain capillary endothelial cells. Brain Res.808(1), 1–7 (1998).
  • Chen W , ZhanC, GuBet al. Targeted brain delivery of itraconazole via RVG29 anchored nanoparticles. J. Drug Target. DOI: 10.3109/1061186X.1062010.1492523 (2010) (Epub ahead of print).
  • Xiang L , ZhouR, FuA, XuX, HuangY, HuC. Targeted delivery of large fusion protein into hippocampal neurons by systemic administration. J. Drug Target. DOI: 10.3109/1061186X.1062010.1523788 (2010) (Epub ahead of print).
  • Gaillard PJ , BrinkA, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int. Congr. Ser.1277, 185–198 (2005).
  • Gaillard PJ , de Boer AG. A novel opportunity for targeted drug delivery to the brain. J. Control. Release116(2), e60–e62 (2006).
  • Anonymous. To-BBB: leverages new platform to target brain tumours, form partnerships. Neurotech Insights.6(8), 19 (2010).

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.