194
Views
0
CrossRef citations to date
0
Altmetric
Review

Application of Polysaccharides for Surface Modification of Nanomedicines

&
Pages 1447-1456 | Published online: 04 Dec 2012

References

  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46(12 Pt 1), 6387–6392 (1986).
  • Hobbs SK , MonskyWL, YuanFet al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95(8), 4607–4612 (1998).
  • Fukumura D , JainRK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res.74(2–3), 72–84 (2007).
  • Kao YJ , JulianoRL. Interactions of liposomes with the reticuloendothelial system. Effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim. Biophys. Acta.677(3–4), 453–461 (1981).
  • Patel HM , MoghimiSM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system – the concept of tissue specificity. Adv. Drug Deliv. Rev.32(1–2), 45–60 (1998).
  • Moghimi SM , HunterAC, MurrayJC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2), 283–318 (2001).
  • Abuchowski A , McCoyJR, PalczukNC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem.252(11), 3582–3586 (1977).
  • Abuchowski A , van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem.252(11), 3578–3581 (1977).
  • Klibanov AL , MaruyamaK, TorchilinVP, HuangL. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268(1), 235–237 (1990).
  • Gref R , MinamitakeY, PeracchiaMT, TrubetskoyV, TorchilinV, LangerR. Biodegradable long-circulating polymeric nanospheres. Science263(5153), 1600–1603 (1994).
  • Lee SW , YunMH, JeongSWet al. Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. J. Control. Release 155(2), 262–271 (2011).
  • Kenausis GL , VorosJ, ElbertDLet al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B. 104(14), 3298–3309 (2000).
  • Du H , ChandaroyP, HuiSW. Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim. Biophys. Acta.1326(2), 236–248 (1997).
  • Hong RL , HuangCJ, TsengYLet al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 5(11), 3645–3652 (1999).
  • Hatakeyama H , AkitaH, HarashimaH. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev.63(3), 152–160 (2011).
  • Lehtinen J , MagarkarA, Stepniewski et al. Analysis of cause of failure of new targeting peptide in PEGylated liposome: molecular modeling as rational design tool for nanomedicine. Eur. J. Pharm. Sci.46(3), 121–130 (2012).
  • Remaut K , LucasB, BraeckmansK, DemeesterJ, De Smedt SC. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J. Control. Release117(2), 256–266 (2007).
  • Mishra S , WebsterP, DavisME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol.83(3), 97–111 (2004).
  • Amoozgar Z , YeoY. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.4(2), 219–233 (2012).
  • Liu Z , JiaoY, WangY, ZhouC, ZhangZ. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev.60(15), 1650–1662 (2008).
  • Coviello T , MatricardiP, AlhaiqueF. Drug delivery strategies using polysaccharidic gels. Expert Opin. Drug Deliv.3(3), 395–404 (2006).
  • Passirani C , BarrattG, DevissaguetJP, LabarreD. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci.62(8), 775–785 (1998).
  • Passirani C , BarrattG, DevissaguetJP, LabarreD. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res.15(7), 1046–1050 (1998).
  • Li J , HuoM, WangJet al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 33(7), 2310–2320 (2012).
  • Yuan ZX , ZhangZR, ZhuDet al. Specific renal uptake of randomly 50% N-acetylated low molecular weight chitosan. Mol. Pharm. 6(1), 305–314 (2009).
  • Rivkin I , CohenK, KofflerJ, MelikhovD, PeerD, MargalitR. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials31(27), 7106–7114 (2010).
  • Jiang G , ParkK, KimJet al. Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers 89(7), 635–642 (2008).
  • Lemarchand C , GrefR, CouvreurP. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm.58(2), 327–341 (2004).
  • Liu Z , JiaoY, WangY, ZhouC, ZhangZ. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev.60(15), 1650–1662 (2008).
  • Baldwin AD , KiickKL. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers94(1), 128–140 (2010).
  • Harrison JH . Dextran as a plasma substitute with plasma volume and excretion studies on control patients. Ann. Surg.139(2), 137–142 (1954).
  • Massia SP , StarkJ, LetbetterDS. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials21(22), 2253–2261 (2000).
  • Rodrigues JS , Santos-MagalhaesNS, CoelhoLC, CouvreurP, PonchelG, GrefR. Novel core(polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins. J. Control. Release92(1–2), 103–112 (2003).
  • Lemarchand C , CouvreurP, BesnardM, CostantiniD, GrefR. Novel polyester-polysaccharide nanoparticles. Pharm. Res.20(8), 1284–1292 (2003).
  • Bonnemain B . Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J. Drug Target.6(3), 167–174 (1998).
  • Moore A , MarecosE, BogdanovA Jr, Weissleder R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology214(2), 568–574 (2000).
  • Lemarchand C , GrefR, PassiraniCet al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27(1), 108–118 (2006).
  • Labarre D , VauthierC, ChauvierreC, PetriB, MüllerR, ChehimiMM. Interactions of blood proteins with poly(isobutylcyano-acrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials26(24), 5075–5084 (2005).
  • Vauthier C , PerssonB, LindnerP, CabaneB. Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials32(6), 1646–1656 (2011).
  • Alhareth K , VauthierC, BourassetF, GueutinC, PonchelG, MoussaF. Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur. J. Pharm. Biopharm.81(2), 453–457 (2012).
  • Kemp MM , LinhardtRJ. Heparin-based nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2(1), 77–87 (2010).
  • Linhardt RJ . 2003. Claude S Hudson Award address in carbohydrate chemistry. heparin: structure and activity. J. Med. Chem.46(13), 2551–2564 (2003).
  • Oschatz C , MaasC, LecherBet al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 34(2), 258–268 (2011).
  • Crum R , SzaboS, FolkmanJ. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science230(4732), 1375–1378 (1985).
  • Folkman J , LangerR, LinhardtRJ, HaudenschildC, TaylorS. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science221(4612), 719–725 (1983).
  • Lundin L , LarssonH, KreugerJet al. Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J. Biol. Chem. 275(32), 24653–24660 (2000).
  • Yoshitomi Y , NakanishiH, KusanoYet al. Inhibition of experimental lung metastases of Lewis lung carcinoma cells by chemically modified heparin with reduced anticoagulant activity. Cancer Lett. 207(2), 165–174 (2004).
  • Yu MK , LeeDY, KimYSet al. Antiang-iogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm. Res. 24(4), 705–714 (2007).
  • Park K , KimYS, LeeGYet al. Tumor endothelial cell targeted cyclic RGD-modified heparin derivative: inhibition of angiogenesis and tumor growth. Pharm. Res. 25(12), 2786–2798 (2008).
  • Chauvierre C , MardenMC, VauthierC, LabarreD, CouvreurP, LeclercL. Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier. Biomaterials25(15), 3081–3086 (2004).
  • Chauvierre C , ManchandaR, LabarreD, VauthierC, MardenMC, LeclercL. Artificial oxygen carrier based on polysaccharides-poly(alkylcyanoacrylates) nanoparticle templates. Biomaterials31(23), 6069–6074 (2010).
  • Park K , KimK, KwonICet al. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir 20(26), 11726–11731 (2004).
  • Park K , LeeGY, KimYSet al. Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J. Control. Release 114(3), 300–306 (2006).
  • Lee E , KimYS, BaeSMet al. Polyproline-type helical-structured low-molecular weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Int. J. Cancer 124(12), 2755–2765 (2009).
  • Kumar MN , MuzzarelliRA, MuzzarelliC, SashiwaH, DombAJ. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev.104(12), 6017–6084 (2004).
  • Bernkop-Schnurch A , DunnhauptS. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm.81(3), 463–469 (2012).
  • Park JH , SaravanakumarG, KimK, KwonIC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev.62(1), 28–41 (2010).
  • Son YJ , JangJS, ChoYWet al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J. Control. Release 91(1–2), 135–145 (2003).
  • Lee E , LeeJ, LeeIHet al. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J. Med. Chem. 51(20), 6442–6449 (2008).
  • Bowman K , LeongKW. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomedicine1(2), 117–128 (2006).
  • van der Merwe SM , VerhoefJC, VerheijdenJHM, KotzéAF, JungingerHE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur. J. Pharm. Biopharm.58(2), 225–235 (2004).
  • Ono K , SaitoY, YuraHet al. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res. 49, 289–295 (2000).
  • Amsden BG , SukartoA, KnightDK, ShapkaSN. Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules8(12), 3758–3766 (2007).
  • Park JH , KwonS, Nam J-O et al. Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery. J. Control. Release95(3), 579–588 (2004).
  • Park K , Kim J-H, Nam YS et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J. Control. Release122(3), 305–314 (2007).
  • Min KH , ParkK, Kim Y-S et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release127(3), 208–218 (2008).
  • Yoo HS , LeeJE, ChungH, KwonIC, JeongSY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J. Control. Release103(1), 235–243 (2005).
  • Amoozgar Z , ParkJ, LinQ, YeoY. Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol. Pharm.9(5), 1262–1270 (2012).
  • Xu P , BajajG, ShuggT, Van Alstine WG, Yeo Y. Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules11(9), 2352–2358 (2010).
  • Na JH , KooH, LeeSet al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32(22), 5252–5261 (2011).
  • Lee SJ , ParkK, OhYKet al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 30(15), 2929–2939 (2009).
  • Kim JH , KimYS, KimSet al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release 111(1–2), 228–234 (2006).
  • Kim JH , KimYS, ParkKet al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Control. Release 127(1), 41–49 (2008).
  • Lee SJ , HuhMS, LeeSYet al. Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew. Chem. Int. Ed. Engl. 51(29), 7203–7207 (2012).
  • Nam HY , KwonSM, ChungHet al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control. Release 135(3), 259–267 (2009).
  • Zhou J , RomeroG, RojasE, MaL, MoyaS, GaoC. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and folic acid binding to achieve selective cell targeting. J. Colloid Interface Sci.345(2), 241–247 (2010).
  • Pastor E , MatveevaE, Valle-GallegoA, GoycooleaFM, Garcia-FuentesM. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloids Surf. B Biointerfaces88(2), 601–609 (2011).
  • Chung YI , KimJC, KimYHet al. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated pluronic on tumor targeting. J. Control. Release 143(3), 374–382 (2010).
  • Chong BF , BlankLM, McLaughlinR, NielsenLK. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol.66(4), 341–351 (2005).
  • Oh EJ , ParkK, KimKSet al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release 141(1), 2–12 (2010).
  • Stern R , AsariAA, SugaharaKN. Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol.85(8), 699–715 (2006).
  • Feinberg RN , BeebeDC. Hyaluronate in vasculogenesis. Science220(4602), 1177–1179 (1983).
  • West DC , HampsonIN, ArnoldF, KumarS. Angiogenesis induced by degradation products of hyaluronic acid. Science228(4705), 1324–1326 (1985).
  • Takahashi Y , LiL, KamiryoMet al. Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner. J. Biol. Chem. 280(25), 24195–24204 (2005).
  • Aruffo A , StamenkovicI, MelnickM, UnderhillCB, SeedB. CD44 is the principal cell surface receptor for hyaluronate. Cell61(7), 1303–1313 (1990).
  • Weigel JA , WeigelPH. Characterization of the recombinant rat 175-kDa hyaluronan receptor for endocytosis (HARE). J. Biol. Chem.278(44), 42802–42811 (2003).
  • Hardwick C , HoareK, OwensRet al. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J. Cell Biol. 117(6), 1343–1350 (1992).
  • Banerji S , NiJ, WangSXet al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144(4), 789–801 (1999).
  • Bajaj G , KimMR, MohammedSI, YeoY. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Control. Release158(3), 386–392 (2012).
  • Luo Y , PrestwichGD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug. Chem.10(5), 755–763 (1999).
  • Eliaz RE , SzokaFC Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res.61(6), 2592–2601 (2001).
  • Luo Y , BernshawNJ, LuZR, KopecekJ, PrestwichGD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm. Res.19(4), 396–402 (2002).
  • Wu JL , LiuCG, WangXL, HuangZH. Preparation and characterization of nanoparticles based on histidine-hyaluronic acid conjugates as doxorubicin carriers. J. Mater. Sci. Mater. Med.23(8), 1921–1929 (2012).
  • Choi KY , YoonHY, KimJHet al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 5(11), 8591–8599 (2011).
  • Fischer D , LiY, AhlemeyerB, KrieglsteinJ, KisselT. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials24(7), 1121–1131 (2003).
  • Han SE , KangH, ShimGYet al. Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides. J. Drug Target 17(2), 123–132 (2009).
  • Park K , HongSW, HurWet al. Target specific systemic delivery of TGF-beta siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials 32(21), 4951–4958 (2011).
  • Jiang G , ParkK, KimJ, KimKS, HahnSK. Target specific intracellular delivery of siRNA/PEI–HA complex by receptor mediated endocytosis. Mol. Pharm.6(3), 727–737 (2009).
  • Takei Y , MaruyamaA, FerdousAet al. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalyx. FASEB J. 18(6), 699–701 (2004).
  • Xu P , QuickGK, YeoY. Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine. Biomaterials30(29), 5834–5843 (2009).
  • Ito T , Iida-TanakaN, NiidomeTet al. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J. Control. Release 112(3), 382–388 (2006).
  • Tomiyama T , ToitaR, KangJHet al. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals. Nanoscale Res. Lett. 6(1), 532 (2011).
  • Lee CT , HuangCP, LeeYD. Synthesis and characterizations of amphiphilic poly(L-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biomol. Eng.24(1), 131–139 (2007).
  • Lee CT , HuangCP, LeeYD. Preparation of amphiphilic poly(L-lactide)-graft-chondroitin sulfate copolymer self-aggregates and its aggregation behavior. Biomacromolecules7(4), 1179–1186 (2006).
  • Park W , ParkSJ, NaK. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf. B Biointerfaces79(2), 501–508 (2010).
  • Lim J , HammoudiT, Bratt-LealAet al. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomater. 7(3), 986–995 (2011).
  • Hamada K , YoshiharaC, ItoTet al. Antitumor effect of chondroitin sulfate-coated ternary granulocyte macrophage-colony-stimulating factor plasmid complex for ovarian cancer. J. Gene Med. 14(2), 120–127 (2012).
  • Pathak A , KumarP, ChuttaniKet al. Gene expression, biodistribution, and pharmacoscintigraphic evaluation of chondroitin sulfate-PEI nanoconstructs mediated tumor gene therapy. ACS Nano 3(6), 1493–1505 (2009).
  • Henke CA , RoongtaU, MickelsonDJ, KnutsonJR, McCarthyJB. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J. Clin. Invest.97(11), 2541–2552 (1996).
  • Kurosaki T , KitaharaT, KawakamiSet al. The development of a gene vector electrostatically assembled with a polysaccharide capsule. Biomaterials 30(26), 4427–4434 (2009).
  • Uchida S , ItakaK, ChenQet al. Combination of chondroitin sulfate and polyplex micelles from poly(ethylene glycol)-poly{N´-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity. J. Control. Release 155(2), 296–302 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.