756
Views
0
CrossRef citations to date
0
Altmetric
Special Focus Issue: Intelligent Drug-Delivery Systems - Editorial

Perspectives on Clinical Translation of Smart Nanotherapeutics

&
Pages 1359-1362 | Published online: 04 Dec 2012

References

  • Jain RK . Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev.9(3), 253–266 (1990).
  • Nie S , XingY, KimGJ, SimonsJW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.9, 257–288 (2007).
  • Lukyanov AN , GaoZ, MazzolaL, TorchilinVP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm. Res.19(10), 1424–1429 (2002).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41, 189–207 (2001).
  • Fernandez-Urrusuno R , FattalE, PorquetDet al. Evaluation of liver toxicological effects induced by polyalkylcyanoacrylate nanoparticles. Toxicol. Appl. Pharmacol. 130(2), 272–279 (1995).
  • Roberts JC , BhalgatMK, ZeraRT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res.30(1), 53–65 (1996).
  • Rihova B , RihaI. Immunological problems of polymer-bound drugs. Crit. Rev. Ther. Drug Carrier Syst.1(4), 311–374 (1985).
  • Talelli M , FattalE, PorquetD, FegerJ, CouvreurP. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials31(30), 7797–7804 (2010).
  • Li Y , XiaoK, LuoJet al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 32(27), 6633–6645 (2011).
  • Li Y , XiaoW, XiaoKet al. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew. Chem. Int. Ed. Engl. 51(12), 2864–2869 (2012).
  • Rijcken CJ , SnelCJ, SchiffelersRMet al. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 28(36), 5581–5593 (2007).
  • Dai J , LinS, ChengDet al. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. Engl. 50(40), 9404–9408 (2011).
  • Li Y , BudamaguntaMS, LuoJ, XiaoW, VossJC, LamKS. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano doi:10.1021/nn302317j (2012) (Epub ahead of print).
  • Xiao K , LiY, LuoJet al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13), 3435–3446 (2011).
  • He C , HuY, YinL, TangC, YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials31(13), 3657–3666 (2010).
  • Xiao K , LuoJ, FowlerWLet al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 30(30), 6006–6016 (2009).
  • Xiao K , LuoJ, LiY, LeeJS, FungG, LamKS. PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J. Control. Release155(2), 272–281 (2011).
  • Song S , LiuD, PengJet al. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J. 23(5), 1396–1404 (2009).
  • Von Maltzahn G , RenY, ParkJHet al. In vivo tumor cell targeting with ‘click‘ nanoparticles. Bioconjug. Chem.19(8), 1570–1578 (2008).
  • Xiao K , LiY, LeeJSet al. ‘OA02‘ peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res. 72(8), 2100–2110 (2012).
  • Matsumura Y Hamaguchi T, Ura T et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer91(10), 1775–1781 (2004).
  • Gradishar WJ , TjulandinS, DavidsonNet al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005).
  • Hamaguchi T , KatoK, YasuiHet al. A Phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 97(2), 170–176 (2007).
  • Shao X , ZhangH, RajianJRet al. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano. 5(11), 8967–8973 (2011).
  • Huang X , ZhangF, LeeSet al. Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33(17), 4370–4378 (2012).
  • Wang AZ , YuetK, ZhangLet al. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (Lond.). 5(3), 361–368 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.