170
Views
0
CrossRef citations to date
0
Altmetric
Mini Review

Thermoresponsive Hydrogels for Cellular Delivery

Pages 1395-1407 | Published online: 04 Dec 2012

References

  • Hunziker EB . Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil.10(6), 432–463 (2002).
  • Lindvall O , KokaiaZ. Stem cells for the treatment of neurological disorders. Nature441(7097), 1094–1096 (2006).
  • Li TS , MikamoA, TakahashiMet al. Comparison of cell therapy and cytokine therapy for functional repair in ischemic and nonischemic heart failure. Cell Transplant. 16(4), 365–374 (2007).
  • Demirbag B , HuriPY, KoseGT, BuyuksungurA, HasirciV. Advanced cell therapies with and without scaffolds. Biotechnol J.6(12), 1437–1453 (2011).
  • Chamberlain G , FoxJ, AshtonB, MiddletonJ. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells25(11), 2739–2749 (2007).
  • Hudson W , CollinsMC, DefreitasD, SunYS, Muller-BorerB, KypsonAP. Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J. Surg. Res.142(2), 263–267 (2007).
  • Wang DA , WilliamsCG, YangF, CherN, LeeH, ElisseeffJH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng.11(1–2), 201–213 (2005).
  • Cellesi F , TirelliN, HubbellJA. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol. Chem. Phys.203(10–11), 1466–1472 (2002).
  • Rosso F , MarinoG, GiordanoA, BarbarisiM, ParmeggianiD, BarbarisiA. Smart materials as scaffolds for tissue engineering. J. Cell Physiol.203(3), 465–470 (2005).
  • Gil ES , HudsonSM. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.29(12), 1173–1222 (2004).
  • Gupta A , MohantyB, BohidarHB. Flory Temperature and upper critical solution temperature of gelatin solutions. Biomacromolecules6(3), 1623–1627 (2005).
  • Coutinho DF , SantSV, ShinHet al. Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29), 7494–7502 (2010).
  • Ruel-Gariepy E , LerouxJC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur. J. Pharm. Biopharm.58(2), 409–426 (2004).
  • Schild HG , MuthukumarM, TirrellDA. Cnonsolvency in mixed aqueous-solutions of poly(N-isopropylacrylamide). Macromolecules24(4), 948–952 (1991).
  • Feil H , BaeYH, FeijenJ, KimSW. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules26(10), 2496–2500 (1993).
  • Liu R , CellesiF, TirelliN, SaundersBR. A study of thermoassociative gelation of aqueous cationic poly(N-isopropyl acrylamide) graft copolymer solutions. Polymer50(6), 1456–1462 (2009).
  • Na K , ParkJH, KimSWet al. Delivery of dexamethasone, ascorbate, and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials 27(35), 5951–5957 (2006).
  • Bae YH , VernonB, HanCK, KimSW. Extracellular matrix for a rechargeable cell delivery system. J. Control. Release53(1–3), 249–258 (1998).
  • Cellesi F , WeberW, FusseneggerM, HubbellJA, TirelliN. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechnol. Bioeng.88(6), 740–749 (2004).
  • Mortensen K , PedersenJS. Structural study on the micelle formation of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer in aqueous-solution. Macromolecules26(4), 805–812 (1993).
  • Jeong B , BaeYH, KimSW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules32(21), 7064–7069 (1999).
  • Jeong B , BaeYH, LeeDS, KimSW. Biodegradable block copolymers as injectable drug-delivery systems. Nature388(6645), 860–862 (1997).
  • Lee PY , CobainE, HuardJ, HuangL. Thermosensitive hydrogel PEG-PLGA-PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol. Ther.15(6), 1189–1194 (2007).
  • Kim MS , KimSK, KimSH, HyunH, KhangG, LeeHB. In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels. Tissue Eng.12(10), 2863–2873 (2006).
  • Lee BH , LeeYM, SohnYS, SongSC. A thermosensitive poly(organophosphazene) gel. Macromolecules35(10), 3876–3879 (2002).
  • Lee SB , SongSC, JinJI, SohnYS. A new class of biodegradable thermosensitive polymers. 2. Hydrolytic properties and salt effect on the lower critical solution temperature of poly(organophosphazenes) with methoxypoly(ethylene glycol) and amino acid esters as side groups. Macromolecules32(23), 7820–7827 (1999).
  • Song SC , LeeSB, JinJI, SohnYS. A new class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules32(7), 2188–2193 (1999).
  • Girotti A , RegueraJ, AriasFJ, AlonsoM, TesteraAM, Rodriguez-CabelloJC. Influence of the molecular weight on the inverse temperature transition of a model genetically engineered elastin-like pH-responsive polymer. Macromolecules37(9), 3396–3400 (2004).
  • Girotti A , RegueraJ, Rodriguez-CabelloJC, AriasFJ, AlonsoM, TesteraAM. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med.15(4), 479–484 (2004).
  • Rodriguez-Cabello JC , RegueraJ, GirottiA, AlonsoM, TesteraAM. Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog. Polym. Sci.30(11), 1119–1145 (2005).
  • Malafaya PB , SilvaGA, ReisRL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev.59(4–5), 207–233 (2007).
  • Harsh DC , GehrkeSH. Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels. J. Control. Release17(2), 175–185 (1991).
  • Tan HP , RamirezCM, MiljkovicN, LiH, RubinJP, MarraKG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials30(36), 6844–6853 (2009).
  • Kim MR , ParkTG. Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone. J. Control. Release80(1–3), 69–77 (2002).
  • Chen C -C, Fang C-L, Al-Suwayeh SA, Leu Y-L, Fang J-Y. Transdermal delivery of selegiline from alginate-Pluronic composite thermogels. Int. J. Pharm.415(1–2), 119–128 (2011).
  • Tan RW , SheZD, WangMB, FangZ, LiuYS, FengQL. Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohydr. Polym.87(2), 1515–1521 (2012).
  • Westhaus E , MessersmithPB. Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials22(5), 453–462 (2001).
  • Rinaudo M . Chitin and chitosan: properties and applications. Prog. Polym. Sci.31(7), 603–632 (2006).
  • Drury JL , MooneyDJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials24(24), 4337–4351 (2003).
  • Cho JH , KimSH, ParkKDet al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25(26), 5743–5751 (2004).
  • Ahmadi R , De Bruijn JD. Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. J. Biomed. Mater. Res. A86A(3), 824–832 (2008).
  • Barreiro-Iglesias R , CoronillaR, ConcheiroA, Alvarez-LorenzoC. Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH: rheological optimisation and drug loading/release behaviour. Eur. J. Pharm. Sci.24(1), 77–84 (2005).
  • Dang JM , SunDDN, Shin-YaY, SieberAN, KostuikJP, LeongKW. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials27(3), 406–418 (2006).
  • Chung HJ , GoDH, BaeJW, JungIK, LeeJW, ParkKD. Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial. Curr. Appl. Phys.5(5), 485–488 (2005).
  • Bhattarai N , RamayHR, GunnJ, MatsenFA, ZhangM. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release103(3), 609–624 (2005).
  • Tang Y -F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF. Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr. Polym.67(4), 491–499 (2007).
  • Chenite A , BuschmannM, WangD, ChaputC, KandaniN. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr. Polym.46(1), 39–47 (2001).
  • Ruel-Gariepy E , CheniteA, ChaputC, GuirguisS, LerouxJC. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm.203(1–2), 89–98 (2000).
  • Zhou HY , ChenXG, KongM, LiuCS, ChaDS, KennedyJF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr. Polym.73(2), 265–273 (2008).
  • Delair T . In situ forming polysaccharide-based 3D-hydrogels for cell delivery in regenerative medicine. Carbohydr. Polym.87(2), 1013–1019 (2012).
  • Kim I -Y, Seo S-J, Moon H-S et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv.26(1), 1–21 (2008).
  • Chenite A , ChaputC, WangDet al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21), 2155–2161 (2000).
  • Lu WN , LüSH, WangHBet al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng. Part A 15(6), 1437–1447 (2009).
  • Lü S , WangH, LuWet al. Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng. Part A 16(4), 1303–1315 (2010).
  • Gao JS , LiuRF, WuJet al. The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials 33(14), 3673–3681 (2012).
  • Richardson SM , HughesN, HuntJA, FreemontAJ, HoylandJA. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials29(1), 85–93 (2008).
  • Crompton KE , GoudJD, BellamkondaRVet al. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28(3), 441–449 (2007).
  • Molinaro G , LerouxJC, DamasJ, AdamA. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials23(13), 2717–2722 (2002).
  • Yan JH , YangL, WangGR, XiaoY, ZhangBH, QiNM. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. J. Biomater. Appl.24(7), 625–637 (2010).
  • Sa-Lima H , CaridadeSG, ManoJF, ReisRL. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter6(20), 5184–5195 (2010).
  • Huang Z , YuB, FengQL, LiSJ, ChenY, LuoLQ. In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr. Polym.85(1), 261–267 (2011).
  • Park KM , LeeSY, JoungYK, NaJS, LeeMC, ParkKD. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater.5(6), 1956–1965 (2009).
  • Lutolf MP , HubbellJA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1), 47–55 (2005).
  • Park KH , YunK. Immobilization of Arg-Gly-Asp (RGD) sequence in a thermosensitive hydrogel for cell delivery using pheochromocytoma cells (PC12). J. Biosci. Bioeng.97(6), 374–377 (2004).
  • Yun K , MoonHT. Inducing chondrogenic differentiation in injectable hydrogels embedded with rabbit chondrocytes and growth factor for neocartilage formation. J. Biosci. Bioeng.105(2), 122–126 (2008).
  • Wang F , LiZQ, KhanMet al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 6(6), 1978–1991 (2010).
  • Li XY , WangT, JiangXJet al. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115(3), 194–199 (2010).
  • Li ZQ , GuoXL, MatsushitaS, GuanJJ. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials32(12), 3220–3232 (2011).
  • Borden BA , YockmanJ, KimSW. Thermoresponsive hydrogel as a delivery scaffold for transfected rat mesenchymal stem cells. Mol. Pharm.7(4), 963–968 (2010).
  • Go DH , JoungYK, LeeSY, LeeMC, ParkKD. Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration. Macromol. Biosci.8(12), 1152–1160 (2008).
  • Kim DH , HeoSJ, ShinJWet al. Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromol. Res. 18(4), 387–391 (2010).
  • Chun C , LimHJ, HongKY, ParkKH, SongSC. The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials30(31), 6295–6308 (2009).
  • Park KH , SongSC. Morphology of spheroidal hepatocytes within injectable, biodegradable, and thermosensitive poly(organophosphazene) hydrogel as cell delivery vehicle. J. Biosci. Bioeng.101(3), 238–242 (2006).
  • Wang C , VarshneyRR, Wang D-A. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv. Drug Deliv. Rev.62(7–8), 699–710 (2010).
  • Martino MM , MochizukiM, RothenfluhDA, RempelSA, HubbellJA, BarkerTH. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials30(6), 1089–1097 (2009).
  • Luo Y , ShoichetMS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater.3(4), 249–253 (2004).
  • Lutolf MP , Lauer-FieldsJL, SchmoekelHGet al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100(9), 5413–5418 (2003).
  • Kost J , LangerR. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev.46(1–3), 125–148 (2001).
  • Mano JF . Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater.10(6), 515–527 (2008).
  • Yin X , HoffmanAS, StaytonPS. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules7(5), 1381–1385 (2006).
  • Gonzalez N , ElviraC, RomanJS. Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine. Macromolecules38(22), 9298–9303 (2005).
  • Fraylich MR , LiuRX, RichardsonSMet al. Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system. J. Colloid Interface Sci. 344(1), 61–69 (2010).
  • Liu R , TirelliN, CellesiF, SaundersBR. Temperature-triggered gelation of aqueous laponite dispersions containing a cationic poly(N-isopropyl acrylamide) graft copolymer. Langmuir25(1), 490–496 (2009).
  • Hong ZK , ReisRL, ManoJF. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater.4(5), 1297–1306 (2008).
  • Couto DS , HongZK, ManoJF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater.5(1), 115–123 (2009).
  • Hou Y , MatthewsAR, SmithermanAMet al. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 29(22), 3175–3184 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.