99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Highly Loaded Nanoparticulate Formulation of Progesterone for Emergency Traumatic Brain Injury Treatment

, , , &
Pages 1269-1279 | Published online: 23 Nov 2012

References

  • Faul M , XuL, WaldMM, CoronadoVG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. US Department of Health and Human Services. Centers for Disease Control and Prevention (2010).
  • Thurman D . The epidemiology and economics of head trauma. In: Head Trauma: Basic, Preclinical, and Clinical Directions. Miller LP, Hayes RL, Newcomb JK (Eds). Wiley-Liss, NY, USA (2001).
  • Finkelstein E , CorsoPS, MillerTR. The Incidence And Economic Burden of Injuries in the United States. Oxford University Press, Oxford, UK (2006).
  • Roberts I , SchierhoutG, AldersonP. Absence of evidence for the effectiveness of five interventions routinely used in the intensive care management of severe head injury: a systematic review. J. Neurol. Neurosurg. Psychiatry65(5), 729–733 (1998).
  • Jiang N , ChoppM, SteinD, FeitH. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Brain Res.735(1), 101–107 (1996).
  • Xiao G , WeiJ, YanW, WangW, LuZ. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit. Care12(2), R61 (2008).
  • Roof RL , DuvdevaniR, SteinDG. Gender influences outcome of brain injury: progesterone plays a protective role. Brain Res.607(1–2), 333–336 (1993).
  • Roof RL , HallED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J. Neurotrauma17(5), 367–388 (2000).
  • Cervantes M , Gonzalez-VidalMD, RuelasR, EscobarA, MoraliG. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus. Arch. Med. Res.33(1), 6–14 (2002).
  • Roof RL , DuvdevaniR, BraswellL, SteinDG. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp. Neurol.129(1), 64–69 (1994).
  • Djebaili M , GuoQ, PettusEH, HoffmanSW, SteinDG. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma22(1), 106–118 (2005).
  • Shear DA , GalaniR, HoffmanSW, SteinDG. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp. Neurol.178(1), 59–67 (2002).
  • Gibson CL , GrayLJ, BathPM, MurphySP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain131(Pt 2), 318–328 (2008).
  • Pan DS , LiuWG, YangXF, CaoF. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed. Environ. Sci.20(5), 432–438 (2007).
  • Wright DW , KellermannAL, HertzbergVSet al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med. 49(4), 391–402, 402 (2007).
  • Salem HF . Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats. Int. J. Nanomed.5, 943–954 (2010).
  • Cavalli R , PeiraE, CaputoO, GascoMR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with beta-cyclodextrins. Int. J. Pharm.182(1), 59–69 (1999).
  • Duchêne D , WouessidjeweD, PonchelG. Cyclodextrins and carrier systems. J. Control. Release62(1–2), 263–268 (1999).
  • Yuan H , WangLL, DuYZ, YouJ, HuFQ, ZengS. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf. B Biointerfaces60(2), 174–179 (2007).
  • Memisoglu E , BochotA, SenM, DucheneD, HincalAA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic beta-cyclodextrins. Int. J. Pharm.251(1–2), 143–153 (2003).
  • Matsumoto J , NakadaY, SakuraiK, NakamuraT, TakahashiY. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int. J. Pharm.185(1), 93–101 (1999).
  • Verrecchia T , SpenlehauerG, BazileDV, Murry-BrelierA, ArchimbaudY, VeillardM. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J. Control. Release36(1–2), 49–61 (1995).
  • Kumar V , Prud‘hommeRK. Thermodynamic limits on drug loading in nanoparticle cores. J. Pharm. Sci.97(11), 4904–4914 (2008).
  • Johnson BK , Prud‘hommeRK. Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust. J. Chem.56(10), 1021–1024 (2003).
  • Johnson BK , Prud‘hommeRK. Chemical processing and micromixing in confined impinging jets. AIChE49(9), 2264–2282 (2003).
  • Gould S , ScottRC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem. Toxicol.43(10), 1451–1459 (2005).
  • Han J , ZhuZ, QianHet al. A simple confined impingement jets mixer for flash nanoprecipitation. J. Pharm. Sci. 101(10), 4018–4023 (2012).
  • Datta R , Tsai S-P, Bonsignore P, Moon S-H, Frank JR. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev.16(2–3), 221–231 (1995).
  • Hu K , LiJ, ShenYet al. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control. Release 134(1), 55–61 (2009).
  • Kumar V , WangL, RiebeM, TungHH, Prud‘hommeRK. Formulation and stability of itraconazole and odanacatib nanoparticles: governing physical parameters. Mol. Pharm.6(4), 1118–1124 (2009).
  • Johnson BK , Prud‘hommeRK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys. Rev. Lett.91(11), 118302 (2003).
  • D‘addio SM , Prud‘hommeRK. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Del. Rev.63(6), 417–426 (2011).
  • Karst D , YangY. Using the solubility parameter to explain disperse dye sorption on polylactide. J. Appl. Polym. Sci.96(2), 416–422 (2005).
  • Kumar V , AdamsonDH, Prud‘hommeRK. Fluorescent polymeric nanoparticles: aggregation and phase behavior of pyrene and amphotericin B molecules in nanoparticle cores. Small6(24), 2907–2914 (2010).
  • Ansell SM , JohnstoneSA, TardiPGet al. Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates. J. Med. Chem. 51(11), 3288–3296 (2008).
  • Akbulut M , GinartP, GindyMEet al. Generic method of preparing multifunctional fluorescent nanoparticles using Flash NanoPrecipitation. Adv. Funct. Mater. 19(5), 718–725 (2009).
  • Laermer SF , ZambettiPF. Alpha-tocopherol (Vitamin E) – the natural antioxidant for polyolefins. J. Plast. Film Sheet.8(3), 228–248 (1992).
  • Salnikova MS , JoshiSB, RyttingJH, WarnyM, MiddaughCR. Preformulation studies of Clostridium difficile toxoids A and B. J. Pharm. Sci.97(10), 4194–4207 (2008).
  • Layre AM , CouvreurP, RichardJ, RequierD, Eddine Ghermani N, Gref R. Freeze–drying of composite core-shell nanoparticles. Drug Dev. Ind. Pharm.32(7), 839–846 (2006).
  • Abdelwahed W , DegobertG, StainmesseS, FessiH. Freeze–drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Del. Rev.58(15), 1688–1713 (2006).
  • Cendejas-Santana G , Hinojosa-TorresJ, CastañoV. Progesterone crystallization from a solvent: a new procedure. Mater. Res. Innovations6(5), 252–255 (2002).
  • Wang F , WachterJA, AntoszFJ, BerglundKA. An investigation of solvent-mediated polymorphic transformation of progesterone using in situ raman spectroscopy. Org. Process Res. Dev.4(5), 391–395 (2000).
  • Payne RS , RobertsRJ, RoweRC, DochertyR. Examples of successful crystal structure prediction: polymorphs of primidone and progesterone. Int. J. Pharm.177(2), 231–245 (1999).
  • Hendry EB . Osmolarity of human serum and of chemical solutions of biologic importance. Clin. Chem.7(2), 156–164 (1961).
  • Hao P -P, Ni J-R, Sun W-L, Huang W. Determination of tertiary butylhydroquinone in edible vegetable oil by liquid chromatography/ion trap mass spectrometry. Food Chem.105(4), 1732–1737 (2007).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.