240
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug Development of Intranasally Delivered Peptides

, , &
Pages 557-568 | Published online: 29 Mar 2012

References

  • Illum L , HinchcliffeM, DavisSS. The effect of blood sampling site and physicochemical characteristics of drugs on bioavailability after nasal administration in the sheep model. Pharm. Res.20(9), 1474–1484 (2003).
  • Hussain AA . Intranasal drug delivery. Adv. Drug Deliv. Rev.29(1–2), 39–49 (1998).
  • Thorne RG , FreyWH 2nd. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin. Pharmacokinet.40(12), 907–946 (2001).
  • O‘Hagan DT , IllumL. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Crit. Rev. Ther. Drug Carrier Syst.7(1), 35–97 (1990).
  • Illum L . Nasal drug delivery-possibilities, problems and solutions. J. Control. Release87(1–3), 187–198 (2003).
  • Harkema JR , CareySA, WagnerJG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol.34(3), 252–269 (2006).
  • Hoekman JD , HoRJ. Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth. Analg.113(3), 641–651 (2011).
  • Westin UE , BostromE, GrasjoJ, Hammarlund-UdenaesM, BjorkE. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm. Res.23(3), 565–572 (2006).
  • Wu H , HuK, JiangX. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin. Drug Deliv.5(10), 1159–1168 (2008).
  • Born J , LangeT, KernW, McgregorGP, BickelU, FehmHL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci.5(6), 514–516 (2002).
  • Dhuria SV , HansonLR, FreyWH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci.99(4), 1654–1673 (2010).
  • Faber WM . The nasal mucosa and the subarachnoid space. J. Anat.62(1), 121–148 (1937).
  • Illum L . Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci.11(1), 1–18 (2000).
  • Merkus P , GuchelaarHJ, BoschDA, MerkusFW. Direct access of drugs to the human brain after intranasal drug administration? Neurology60(10), 1669–1671 (2003).
  • Jerusalmi A , Morris-DownesM, SheahanBJ, AtkinsGJ. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol. Ther.8(6), 886–894 (2003).
  • Henriksson J , TjalveH. Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol. Sci.55(2), 392–398 (2000).
  • Danielyan L , SchaferR, von Ameln-Mayerhofer A et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res.14(1), 3–16 (2011).
  • Hanson LR , FreyWH 2nd. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci.9(Suppl. 3), S5 (2008).
  • Thorne RG , PronkGJ, PadmanabhanV, FreyWH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience.127(2), 481–496 (2004).
  • Giroux M , HwangP, PrasadA. Controlled particle dispersion: applying vortical flow to optimize nasal drug deposition. Drug Deliv. Technol.5(3), 6 (2005).
  • Djupesland PG , SkrettingA, WinderenM, HolandT. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope116(3), 466–472 (2006).
  • Maggio ET . Intravail: highly effective intranasal delivery of peptide and protein drugs. Expert Opin. Drug Deliv.3(4), 529–539 (2006).
  • Stevens J , PloegerBA, Van Der Graaf PH, Danhof M, De Lange EC. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab. Dispos.39(12), 2275–2282 (2011).
  • Merkus FW , Van Den Berg MP. Can nasal drug delivery bypass the blood–brain barrier? Questioning the direct transport theory. Drugs R. D.8(3), 133–144 (2007).
  • US FDA. Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. (2005).
  • Reno F . Nonclinical toxicology. In: Principles and Practice of Pharmaceutical Medicine. Edwards LD, Fox AW, Stonier PD (Eds). Wiley-Blackwell, Oxford, UK, 68–78 (2011).
  • McMartin C , HutchinsonLE, HydeR, PetersGE. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J. Pharm. Sci.76(7), 535–540 (1987).
  • Fisher AN , BrownK, DavisSS, ParrGD, SmithDA. The effect of molecular size on the nasal absorption of water-soluble compounds in the albino rat. J. Pharm. Pharmacol.39(5), 357–362 (1987).
  • Sakane T , AkizukiM, YamashitaS, NadaiT, HashidaM, SezakiH. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem. Pharm. Bull. (Tokyo)39(9), 2456–2458 (1991).
  • Sakane T , AkizukiM, YamashitaS, SezakiH, NadaiT. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J. Pharm. Pharmacol.46(5), 378–379 (1994).
  • England RJ , HomerJJ, KnightLC, EllSR. Nasal pH measurement: a reliable and repeatable parameter. Clin. Otolaryngol. Allied Sci.24(1), 67–68 (1999).
  • Pujara CP , ShaoZ, DuncanMR, MitraAK. Effects of formulation variables on epithelial cell integrity: biochemical evaluations. Intl J. Pharm. (114), 7 (1995).
  • Ohwaki T , AndoH, KakimotoFet al. Effects of dose, pH, and osmolarity on nasal absorption of secretin in rats. II: histological aspects of the nasal mucosa in relation to the absorption variation due to the effects of pH and osmolarity. J. Pharm. Sci. 76(9), 695–698 (1987).
  • Dufes C , OlivierJC, GaillardF, GaillardA, CouetW, MullerJM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Intl J. Pharm.255(1–2), 87–97 (2003).
  • Olivier JC , DjilaniM, FahmyS, CouetW. In situ nasal absorption of midazolam in rats. Intl J. Pharm.213(1–2), 187–192 (2001).
  • Greiff L , AnderssonM, WollmerP, PerssonCG. Hypertonic saline increases secretory and exudative responsiveness of human nasal airway in vivo. Eur. Respir. J.21(2), 308–312 (2003).
  • Dua R , DuncanM, ZiaH, NeedhamTE. The influence of the enhancer dimyristoylphosphatidylglycerol and formulation factors on the nasal absorption of salmon calcitonin. Drug Deliv.5(2), 127–134 (1998).
  • Furubayashi T , InoueD, KamaguchiA, HigashiY, SakaneT. Influence of formulation viscosity on drug absorption following nasal application in rats. Drug Metab. Pharmacokinet.22(3), 206–211 (2007).
  • Sarkar MA . Drug metabolism in the nasal mucosa. Pharm. Res.9(1), 1–9 (1992).
  • Schipper NG , VerhoefJC, MerkusFW. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm. Res.8(7), 807–814 (1991).
  • Harris AS , NilssonIM, WagnerZG, AlknerU. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J. Pharm. Sci.75(11), 1085–1088 (1986).
  • Davis SS , IllumL. Absorption enhancers for nasal drug delivery. Clin. Pharmacokinet.42(13), 1107–1128 (2003).
  • Chen SC , EitingK, CuiKet al. Therapeutic utility of a novel tight junction modulating peptide for enhancing intranasal drug delivery. J. Pharm. Sci. 95(6), 1364–1371 (2006).
  • Ozsoy Y , GungorS, CevherE. Nasal delivery of high molecular weight drugs. Molecules14(9), 3754–3779 (2009).
  • Matsuyama T , MoritaT, HorikiriY, YamaharaH, YoshinoH. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant. J. Control. Release110(2), 347–352 (2006).
  • Novakovic ZM , LeinungMC, LeeDW, GrassoP. Intranasal administration of mouse [D-Leu-4]OB3, a synthetic peptide amide with leptin-like activity, enhances total uptake and bioavailability in Swiss Webster mice when compared to intraperitoneal, subcutaneous, and intramuscular delivery systems. Regul. Pept.154(1–3), 107–111 (2009).
  • Waldrop MA , LeinungMC, LeeDW, GrassoP. Intranasal delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, improves energy balance, glycaemic control, insulin sensitivity and bone formation in leptin-resistant C57BLK/6-m db/db mice. Diabetes Obes. Metab.12(10), 871–875 (2010).
  • Krauland AH , AlonsoMJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Intl J. Pharm.340(1–2), 134–142 (2007).
  • Varshosaz J , SadraiH, AlinagariR. Nasal delivery of insulin using chitosan microspheres. J. Microencapsul.21(7), 761–774 (2004).
  • Wang X , ZhengC, WuZet al. Chitosan–NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. B. Appl. Biomater. 88(1), 150–161 (2009).
  • Morimoto K , YamaguchiH, IwakuraYet al. Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue. Pharm. Res. 8(9), 1175–1179 (1991).
  • Gwak HS , ChoYM, ChunIK. Analgesic effects of intra-nasal enkephalins. J. Pharm. Pharmacol.55(9), 1207–1212 (2003).
  • Agu RU , Vu Dang H, Jorissen M, Kinget R, Verbeke N. Metabolism and absorption enhancement of methionine enkephalin in human nasal epithelium. Peptides25(4), 563–569 (2004).
  • Du Plessis LH , LubbeJ, StraussT, KotzeAF. Enhancement of nasal and intestinal calcitonin delivery by the novel Pheroid fatty acid based delivery system, and by N-trimethyl chitosan chloride. Intl J. Pharm.385(1–2), 181–186 (2010).
  • Kubek MJ , DombAJ, VeronesiMC. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics6(2), 359–371 (2009).
  • Heurtault B , FrischB, PonsF. Liposomes as delivery systems for nasal vaccination: strategies and outcomes. Expert. Opin. Drug Deliv.7(7), 829–844 (2010).
  • Illum L , JorgensenH, BisgaardH, KrogsgaardO, RossingN. Bioadhesive microspheres as a potential nasal drug delivery system. Intl J. Pharm.39(3), 189–199 (1987).
  • Bjork E , EdmanP. Degradable starch microspheres as a nasal delivery system for insulin. Intl J. Pharm.47(1–3), 233–238 (1988).
  • Critchley H , DavisSS, FarrajNF, IllumL. Nasal absorption of desmopressin in rats and sheep. Effect of a bioadhesive microsphere delivery system. J. Pharm. Pharmacol.46(8), 651–656 (1994).
  • Leitner VM , GuggiD, KraulandAH, Bernkop-SchnurchA. Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. J. Control. Release100(1), 87–95 (2004).
  • Lim ST , ForbesB, BerryDJ, MartinGP, BrownMB. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. Intl J. Pharm.231(1), 73–82 (2002).
  • Illum L , FisherAN, Jabbal-GillI, DavisSS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Intl J. Pharm.222(1), 109–119 (2001).
  • Law SL , HuangKJ, ChouHY. Preparation of desmopressin-containing liposomes for intranasal delivery. J. Control. Release70(3), 375–382 (2001).
  • Migliore MM , VyasTK, CampbellRB, AmijiMM, WaszczakBL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J. Pharm. Sci.99(4), 1745–1761 (2010).
  • Marx D . Selecting a nasal spray pump. Inhalation Magazine, 4 (2009).
  • FDA. Guidance for Industry. Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products – chemistry, manufacturing, and controls documentation. (2002).
  • EMEA. Guideline on the Pharmaceutical Quality of Inhalation and Nasal Products. EMEA/CHM/QWP/49313/2005 (2006).
  • Huang SH , GongTW, GongSG. Isolation of epithelial cells in the developing primary lip and palate. J. Craniofac. Surg.22(5), 1847–1851 (2011).
  • Yoo JW , KimYS, LeeSHet al. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm. Res. 20(10), 1690–1696 (2003).
  • Liu Q , ShaoX, ChenJet al. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol. Appl. Pharmacol251(1), 79–84 (2011).
  • Vetter A , AugustijnsP, Bernkop-SchnurchA. Solubilizing agents in nasal formulations and their effect on ciliary beat frequency. Toxicol. In Vitro26(1), 150–156 (2011).
  • Callens C , AdriaensE, DierckensK, RemonJP. Toxicological evaluation of a bioadhesive nasal powder containing a starch and Carbopol 974 P on rabbit nasal mucosa and slug mucosa. J. Control. Release76(1–2), 81–91 (2001).
  • Trimarchi M , MiluzioA, NicolaiP, MorassiML, BussiM, MarchisioPC. Massive apoptosis erodes nasal mucosa of cocaine abusers. J. Rhinol.20(2), 160–164 (2006).
  • Sunderman FW , Jr. Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin. Lab. Sci.31(1), 3–24 (2001).
  • Alexander TH , DavidsonTM. Intranasal zinc and anosmia: the zinc-induced anosmia syndrome. Laryngoscope116(2), 217–220 (2006).
  • Doty RL , MarcusA, LeeWW. Development of the 12-item cross-cultural smell identification test (CC-SIT). Laryngoscope106(3 Pt 1), 353–356 (1996).
  • Gizurarson S . Animal models for intranasal drug delivery studies. A review article. Acta Pharm. Nord.2(2), 105–122 (1990).
  • Menache MG , HannaLM, GrossEAet al. Upper respiratory tract surface areas and volumes of laboratory animals and humans: considerations for dosimetry models. J. Toxicol. Environ. Health 50(5), 475–506 (1997).
  • Kao HD , TraboulsiA, ItohS, DittertL, HussainA. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm. Res.17(8), 978–984 (2000).
  • Davies B , MorrisT. Physiological parameters in laboratory animals and humans. Pharm. Res.10(7), 1093–1095 (1993).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.