357
Views
1
CrossRef citations to date
0
Altmetric
Review

Intelligent Design of Multifunctional lipid-coated Nanoparticle Platforms for Cancer Therapy

&
Pages 1429-1445 | Published online: 04 Dec 2012

References

  • Sinha R , KimGJ, NieS, ShinDM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther.5(8), 1909–1917 (2006).
  • Jabr-Milane LS , Van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev.34(7), 592–602 (2008).
  • Chaffer CL , WeinbergRA. A perspective on cancer cell metastasis. Science331(6024), 1559–1564 (2011).
  • Marshall E . Cancer research and the $90 billion metaphor. Science331(6024), 1540–1541 (2011).
  • Zhang L , GuFX, ChanJM, WangAZ, LangerRS, FarokhzadOC. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther.83(5), 761–769 (2008).
  • Kim BY , RutkaJT, ChanWC. Nanomedicine. N. Engl. J. Med.363(25), 2434–2443 (2010).
  • Buse J , El-AneedA. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond.)5(8), 1237–1260 (2010).
  • Yu MK , ParkJ, JonS. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics2(1), 3–44 (2012).
  • Farrell D , PtakK, PanaroNJ, GrodzinskiP. Nanotechnology-based cancer therapeutics – promise and challenge – lessons learned through the NCI alliance for nanotechnology in cancer. Pharm. Res.28(2), 273–278 (2011).
  • Riehemann K , SchneiderSW, LugerTA, GodinB, FerrariM, FuchsH. Nanomedicine – challenge and perspectives. Angew. Chem. Int. Ed. Engl.48(5), 872–897 (2009).
  • Sokolova V , EppleM. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed. Engl.47(8), 1382–1395 (2008).
  • Gratton SE , RoppPA, PohlhausPDet al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105(33), 11613–11618 (2008).
  • Decuzzi P , PasqualiniR, ArapW, FerrariM. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res.26(1), 235–243 (2009).
  • Champion JA , MitragotriS. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res.26(1), 244–249 (2009).
  • Smith BR , KempenP, BouleyDet al. Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Letts 12(7), 3369–3377 (2012)
  • Davis ME , ChenZG, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov.7(9), 771–782 (2008).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5(4), 505–515 (2008).
  • Longmire M , ChoykePL, KobayashiH. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.)3(5), 703–717 (2008).
  • Klibanov AL , MaruyamaK, TorchilinVP, HuangL. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268(1), 235–237 (1990).
  • Barreto JA , O‘MalleyW, KubeilM, GrahamB, StephanH, SpicciaL. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater.23(12), 18–40 (2011).
  • Geng Y , DalhaimerP, CaiSet al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249–255 (2007).
  • Champion JA , MitragotriS. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA103(13), 4930–4934 (2006).
  • Decuzzi P , GodinB, TanakaTet al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141(3), 320–327 (2010).
  • Schipper ML , IyerG, KohALet al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5(1), 126–134 (2009).
  • Bartlett DW , DavisME. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem.18(2), 456–468 (2007).
  • Lee H , LeeK, ParkTG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug. Chem.19(6), 1319–1325 (2008).
  • Bartneck M , KeulHA, WambachMet al. Effects of nanoparticle surface-coupled peptides, functional endgroups, and charge on intracellular distribution and functionality of human primary reticuloendothelial cells. Nanomedicine doi:10.1016/j.nano.2012.02.012 (2012) (Epub ahead of print).
  • Xiao K , LiY, LuoJet al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13), 3435–3446 (2011).
  • Juliano RL , StampD. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun.63(3), 651–658 (1975).
  • Aggarwal P , HallJB, MclelandCB, DobrovolskaiaMA, McneilSE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev.61(6), 428–437 (2009).
  • Allen TM , HansenC. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta.1068(2), 133–141 (1991).
  • Malam Y , LoizidouM, SeifalianAM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci.30(11), 592–599 (2009).
  • Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Cancer307(1), 93–102 (2006).
  • Choi HS , IpeBI, MisraP, LeeJH, BawendiMG, FrangioniJV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Letts9(6), 2354–2359 (2009).
  • Kaminskas LM , BoydBJ, KarellasPet al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly L-lysine dendrimers. Mol. Pharm. 5(3), 449–463 (2008).
  • Peracchia MT , FattalE, DesmaeleDet al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release 60(1), 121–128 (1999).
  • Zamboni WC . Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res.11(23), 8230–8234 (2005).
  • Petros RA , DesimoneJM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug. Discov.9(8), 615–627 (2010).
  • Nakamura T , AkitaH, YamadaY, HatakeyamaH, HarashimaH. A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications. Acc. Chem. Res.45(7), 1113–1121 (2012).
  • Wang T , UpponiJR, TorchilinVP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Cancer427(1), 3–20 (2012).
  • Hatakeyama H , AkitaH, KogureKet al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 14(1), 68–77 (2007).
  • Romberg B , HenninkWE, StormG. Sheddable coatings for long-circulating nanoparticles. Pharm. Res.25(1), 55–71 (2008).
  • Ishida T , MaedaR, IchiharaM, IrimuraK, KiwadaH. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J. Control. Release88(1), 35–42 (2003).
  • Ishida T , KiwadaH. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Cancer354(1–2), 56–62 (2008).
  • Ishihara T , TakedaM, SakamotoHet al. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res. 26(10), 2270–2279 (2009).
  • Xu H , WangKQ, DengYH, Chen Da W. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials31(17), 4757–4763 (2010).
  • Takeuchi H , KojimaH, YamamotoH, KawashimaY. Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J. Control. Release75(1–2), 83–91 (2001).
  • Torchilin VP , LevchenkoTS, WhitemanKRet al. Amphiphilic poly-N-vinylpyrrolidones. synthesis, properties and liposome surface modification. Biomaterials 22(22), 3035–3044 (2001).
  • Whiteman KR , SubrV, UlbrichK, TorchilinVP. Poly(Hpma)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res.11(2–3), 153–164 (2001).
  • Metselaar JM , BruinP, De Boer LW et al. A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem.14(6), 1156–1164 (2003).
  • Fang J , NakamuraH, MaedaH. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev.63(3), 136–151 (2011).
  • Yuan F , LeunigM, HuangSK, BerkDA, PapahadjopoulosD, JainRK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res.54(13), 3352–3356 (1994).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12), 751–760 (2007).
  • Allen TM , CullisPR. Drug delivery systems: entering the mainstream. Science303(5665), 1818–1822 (2004).
  • Hobbs SK , MonskyWL, YuanFet al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95(8), 4607–4612 (1998).
  • Heldin CH , RubinK, PietrasK, OstmanA. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer4(10), 806–813 (2004).
  • Farokhzad OC , LangerR. Impact of nanotechnology on drug delivery. ACS Nano.3(1), 16–20 (2009).
  • Gottesman MM , FojoT, BatesSE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer2(1), 48–58 (2002).
  • Kirpotin DB , DrummondDC, ShaoYet al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13), 6732–6740 (2006).
  • Van Rooy I , MastrobattistaE, StormG, HenninkWE, SchiffelersRM. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Control. Release150(1), 30–36 (2011).
  • Kwon IK , LeeSC, HanB, ParkK. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release doi:10.1016/j.jconrel.2012.07.010 (2012) (Epub ahead of print).
  • Shi J , XiaoZ, KamalyN, FarokhzadOC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res.44(10), 1123–1134 (2011).
  • Kirpotin D , ParkJW, HongKet al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36(1), 66–75 (1997).
  • Bangham AD , HorneRW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol.8, 660–668 (1964).
  • Srinivas R , SamantaS, ChaudhuriA. Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem. Soc. Rev.38(12), 3326–3338 (2009).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4(2), 145–160 (2005).
  • Puri A , LoomisK, SmithBet al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26(6), 523–580 (2009).
  • Ramishetti S , ArupG, GopikrishnaM, SachinBA, ChaudhuriA. A long-lasting dendritic cell DNA vaccination system using lysinylated amphiphiles with mannose-mimicking head-groups. Biomaterials33(26), 6220–6229 (2012).
  • Vasievich EA , RamishettiS, ZhangY, HuangL. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model. Mol. Pharm.9(2), 261–268 (2012).
  • Un K , KawakamiS, SuzukiR, MaruyamaK, YamashitaF, HashidaM. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials31(30), 7813–7826 (2010).
  • Stover TC , SharmaA, RobertsonGP, KesterM. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin. Cancer Res.11(9), 3465–3474 (2005).
  • Goncalves A , BraudAC, ViretFet al. Phase I study of pegylated liposomal doxorubicin (Caelyx) in combination with carboplatin in patients with advanced solid tumors. Anticancer Res. 23(4), 3543–3548 (2003).
  • Schwonzen M , KurbacherCM, MallmannP. Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs11(9), 681–685 (2000).
  • Shapiro EM , SkrticS, SharerK, HillJM, DunbarCE, KoretskyAP. MRI detection of single particles for cellular imaging. Proc. Natl Acad. Sci. USA101(30), 10901–10906 (2004).
  • Bulte JW , ZhangS, Van Gelderen P et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl Acad. Sci. USA96(26), 15256–15261 (1999).
  • Wilhelm C , FortinJP, GazeauF. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J. Nanosci. Nanotechnol.7(8), 2933–2937 (2007).
  • Lin BL , ShenXD, CuiS. Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Biomed. Mater.2(2), 132–134 (2007).
  • Sun C , LeeJS, ZhangM. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev.60(11), 1252–1265 (2008).
  • Bhattarai SR , KimSY, JangKYet al. N-hexanoyl chitosan-stabilized magnetic nanoparticles: enhancement of adenoviral-mediated gene expression both in vitro and in vivo. Nanomedicine4(2), 146–154 (2008).
  • Plank C , SchillingerU, SchererFet al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384(5), 737–747 (2003).
  • De Cuyper M , JoniauM. Magnetoliposomes. Formation and structural characterization. Eur. Biophys. J.15(5), 311–319 (1988).
  • Cesur H , RubinsteinI, PaiA, OnyukselH. Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomedicine5(2), 178–183 (2009).
  • Sabate R , Barnadas-RodriguezR, Callejas-FernandezJ, Hidalgo-AlvarezR, EstelrichJ. Preparation and characterization of extruded magnetoliposomes. Int. J. Cancer347(1–2), 156–162 (2008).
  • Martina MS , FortinJP, MenagerCet al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc. 127(30), 10676–10685 (2005).
  • Janib SM , MosesAS, MackayJA. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev.62(11), 1052–1063 (2010).
  • Zhang Y , KohlerN, ZhangM. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials23(7), 1553–1561 (2002).
  • Tai LA , TsaiPJ, WangYC, WangYJ, LoLW, YangCS. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology20(13), 135101 (2009).
  • Chen Y , BoseA, BothunGD. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS nano.4(6), 3215–3221 (2010).
  • Pradhan P , GiriJ, RiekenFet al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 142(1), 108–121 (2010).
  • Yang X , GrailerJJ, RowlandIJet al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31(34), 9065–9073 (2010).
  • Wang H , WangS, LiaoZet al. Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int. J. Cancer 430(1–2), 342–349 (2012).
  • Fattahi H , LaurentS, LiuF, ArsalaniN, Vander Elst L, Muller RN. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine (Lond.)6(3), 529–544 (2011).
  • Felgner PL , TsaiYJ, SukhuLet al. Improved cationic lipid formulations for in vivo gene therapy. Ann. N. Y. Acad. Sci. 772, 126–139 (1995).
  • Gustafsson J , ArvidsonG, KarlssonG, AlmgrenM. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim. Biophys. Acta.1235(2), 305–312 (1995).
  • Li S , RizzoMA, BhattacharyaS, HuangL. Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther.5(7), 930–937 (1998).
  • Li S , HuangL. In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes. Gene Ther.4(9), 891–900 (1997).
  • Li B , LiS, TanYet al. Lyophilization of cationic lipid–protamine–DNA (LPD) complexes. J. Pharm. Sci. 89(3), 355–364 (2000).
  • Gao X , HuangL. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry35(3), 1027–1036 (1996).
  • Li SD , HuangL. Surface-modified LPD nanoparticles for tumor targeting. Ann. N. Y. Acad. Sci.1082, 1–8 (2006).
  • Li SD , HuangL. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim. Biophys. Acta.1788(10), 2259–2266 (2009).
  • Li SD , HuangL. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release145(3), 178–181 (2010).
  • Megalizzi V , Le Mercier M, Decaestecker C. Sigma receptors and their ligands in cancer biology: overview and new perspectives for cancer therapy. Med. Res. Rev.32(2), 410–427 (2012).
  • Banerjee R , TyagiP, LiS, HuangL. Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer112(4), 693–700 (2004).
  • John CS , VilnerBJ, GeyerBC, MoodyT, BowenWD. Targeting sigma receptor-binding benzamides as in vivo diagnostic and therapeutic agents for human prostate tumors. Cancer Res.59(18), 4578–4583 (1999).
  • John CS , BowenWD, FisherSJet al. Synthesis, in vitro pharmacologic characterization, and preclinical evaluation of N-[2-(1´-piperidinyl)ethyl]-3-[125I]iodo-4-methoxybenzamide (P[125I]MBA) for imaging breast cancer. Nucl. Med. Biol. 26(4), 377–382 (1999).
  • Li SD , ChonoS, HuangL. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J. Control. Release126(1), 77–84 (2008).
  • Li SD , ChenYC, HackettMJ, HuangL. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol. Ther.16(1), 163–169 (2008).
  • Chen Y , BathulaSR, YangQ, HuangL. Targeted nanoparticles deliver siRNA to melanoma. J. Invest. Dermatol.130(12), 2790–2798 (2010).
  • Chen Y , BathulaSR, LiJ, HuangL. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J. Biol. Chem.285(29), 22639–22650 (2010).
  • Chen Y , ZhuX, ZhangX, LiuB, HuangL. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther.18(9), 1650–1656 (2010).
  • Johnson FM , SaigalB, TranH, DonatoNJ. Abrogation of signal transducer and activator of transcription 3 reactivation after Src kinase inhibition results in synergistic antitumor effects. Clin. Cancer Res.13(14), 4233–4244 (2007).
  • Kloth MT , LaughlinKK, BiscardiJS, BoernerJL, ParsonsSJ, SilvaCM. STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J. Biol. Chem.278(3), 1671–1679 (2003).
  • Shelburne CP , MccoyME, PiekorzRet al. Stat5 expression is critical for mast cell development and survival. Blood 102(4), 1290–1297 (2003).
  • Kim SK , HuangL. Nanoparticle delivery of a peptide targeting EGFR signaling. J. Control. Release157(2), 279–286 (2012).
  • Hatakeyama H , AkitaH, HarashimaH. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev.63(3), 152–160 (2011).
  • Khalil IA , KogureK, FutakiS, HarashimaH. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem.281(6), 3544–3551 (2006).
  • El-Sayed A , KhalilIA, KogureK, FutakiS, HarashimaH. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J. Biol. Chem.283(34), 23450–23461 (2008).
  • Nakamura T , MoriguchiR, KogureK, ShastriN, HarashimaH. Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol. Ther.16(8), 1507–1514 (2008).
  • Joraku A , HomhuanA, KawaiKet al. Immunoprotection against murine bladder carcinoma by octaarginine-modified liposomes incorporating cell wall of Mycobacterium bovis bacillus Calmette-Guerin. BJU Int. 103(5), 686–693 (2009).
  • Li W , NicolF, SzokaFC Jr. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev.56(7), 967–985 (2004).
  • Hatakeyama H , ItoE, AkitaHet al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Control. Release 139(2), 127–132 (2009).
  • Sakurai Y , HatakeyamaH, AkitaHet al. Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system. Biol. Pharm. Bull. 32(5), 928–932 (2009).
  • Kakudo T , ChakiS, FutakiSet al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43(19), 5618–5628 (2004).
  • Subbarao NK , ParenteRA, SzokaFC Jr, Nadasdi L, Pongracz K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry26(11), 2964–2972 (1987).
  • Sakurai Y , HatakeyamaH, SatoYet al. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 32(24), 5733–5742 (2011).
  • Trewyn BG , GiriS, Slowing, Ii, Lin VS. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. (Camb.) (31), 3236–3245 (2007).
  • Slowing II , TrewynBG, GiriS, LinVS. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater.17(8), 1225–1236 (2007).
  • Rosi NL , MirkinCA. Nanostructures in biodiagnostics. Chem. Rev.105(4), 1547–1562 (2005).
  • Jiang XM , BrinkerCJ. Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules. J. Am. Chem. Soc.128(14), 4512–4513 (2006).
  • Cauda V , EngelkeH, SauerAet al. Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Letts 10(7), 2484–2492 (2010).
  • Liu JW , Stace-NaughtonA, JiangXM, BrinkerCJ. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc.131(4), 1354–1355 (2009).
  • Mal NK , FujiwaraM, TanakaY. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature421(6921), 350–353 (2003).
  • Angelos S , ChoiE, VogtleF, De Cola L, Zink JI. Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J. Phys. Chem. C111(18), 6589–6592 (2007).
  • Lai CY , TrewynBG, JeftinijaDMet al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125(15), 4451–4459 (2003).
  • Bally M , BaileyK, SugiharaK, GrieshaberD, VorosJ, StadlerB. Liposome and lipid bilayer arrays towards biosensing applications. Small6(22), 2481–2497 (2010).
  • Ashley CE , CarnesEC, PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011).
  • Mornet S , LambertO, DuguetE, BrissonA. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Letts5(2), 281–285 (2005).
  • Liu J , JiangX, AshleyC, BrinkerCJ. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc.131(22), 7567–7569 (2009).
  • Graham FL , Van Der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology52(2), 456–467 (1973).
  • Kataoka Y , KaK. Block Copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir18(12), 4539–4543 (2002).
  • Maitra A . Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev. Mol. Diagn.5(6), 893–905 (2005).
  • Olton D , LiJ, WilsonMEet al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials 28(6), 1267–1279 (2007).
  • Kakizawa Y , FurukawaS, IshiiA, KataokaK. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J. Control. Release111(3), 368–370 (2006).
  • Tabakovic A , KesterM, AdairJH. Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.4(1), 96–112 (2012).
  • Li J , ChenYC, TsengYC, MozumdarS, HuangL. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release142(3), 416–421 (2010).
  • Morgan TT , MuddanaHS, AltinogluEIet al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Letts 8(12), 4108–4115 (2008).
  • Faraji AH , WipfP. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem.17(8), 2950–2962 (2009).
  • Li J , YangY, HuangL. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release158(1), 108–114 (2012).
  • Yang Y , HuY, WangY, LiJ, LiuF, HuangL. Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer. Mol. Pharm. doi:10.1021/mp300152v (2012) (Epub ahead of print).
  • Huang L , LiuY. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng.13, 507–530 (2011).
  • Yang Y , LiJ, LiuF, HuangL. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol. Ther.20(3), 609–615 (2012).
  • Huynh NT , PassiraniC, SaulnierP, BenoitJP. Lipid nanocapsules: a new platform for nanomedicine. Int. J. Cancer379(2), 201–209 (2009).
  • Coon JS , KnudsonW, ClodfelterK, LuB, WeinsteinRS. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res.51(3), 897–902 (1991).
  • Lamprecht A , BenoitJP. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J. Control. Release112(2), 208–213 (2006).
  • Garcion E , LamprechtA, HeurtaultBet al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol. Cancer Ther. 5(7), 1710–1722 (2006).
  • Morille M , PassiraniC, DufortSet al. Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials 32(9), 2327–2333 (2011).
  • Vonarbourg A , PassiraniC, DesigauxLet al. The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials 30(18), 3197–3204 (2009).
  • Bhaumik S . Advances in imaging gene-directed enzyme prodrug therapy. Curr. Pharm. Biotechnol.12(4), 497–507 (2011).
  • David S , CarmoyN, ResnierPet al. In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int. J. Cancer423(1), 108–115 (2012).
  • Trickler WJ , MuntDJ, JainN, JoshiSS, DashAK. Antitumor efficacy, tumor distribution and blood pharmacokinetics of chitosan/glyceryl-monooleate nanostructures containing paclitaxel. Nanomedicine (Lond.)6(3), 437–448 (2011).
  • Hasan W , ChuK, GullapalliAet al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Letts. 12(1), 287–292 (2012).
  • Li W , YangY, WangCet al. Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chem. Commun. (Camb.) 48(65), 8120–8122 (2012).
  • Khandare J , CalderonM, DagiaNM, HaagR. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev.41(7), 2824–2848 (2012).
  • Park JW , HongK, KirpotinDBet al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8(4), 1172–1181 (2002).
  • Sun B , RanganathanB, FengSS. Multifunctional poly(D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials29(4), 475–486 (2008).
  • Gao J , ZhongW, HeJet al. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Cancer 374(1–2), 145–152 (2009).
  • Farokhzad OC , JonS, KhademhosseiniA, TranTN, LavanDA, LangerR. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res.64(21), 7668–7672 (2004).
  • Farokhzad OC , ChengJ, TeplyBAet al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103(16), 6315–6320 (2006).
  • Sahoo SK , LabhasetwarV. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm.2(5), 373–383 (2005).
  • Li JL , WangL, LiuXYet al. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett.274(2), 319–326 (2009).
  • Thomas TP , ShuklaR, KotlyarAet al. Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 9(2), 603–609 (2008).
  • Karmali PP , KotamrajuVR, KastantinMet al. Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine 5(1), 73–82 (2009).
  • Sugahara KN , TeesaluT, KarmaliPPet al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981), 1031–1035 (2010).
  • Oh S , KimBJ, SinghNP, LaiH, SasakiT. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Cancer Lett.274(1), 33–39 (2009).
  • Lo A , LinCT, WuHC. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther.7(3), 579–589 (2008).
  • Wang S , LowPS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release53(1–3), 39–48 (1998).
  • Zeng C , VangveravongS, XuJet al. Subcellular localization of sigma-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res. 67(14), 6708–6716 (2007).
  • Hornick JR , XuJ, VangveravongSet al. The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol. Cancer 9, 298 (2010).
  • Wang B , RouzierR, AlbarracinCTet al. Expression of sigma 1 receptor in human breast cancer. Breast Cancer Res. Treat. 87(3), 205–214 (2004).
  • Kim TH , ParkIK, NahJW, ChoiYJ, ChoCS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials25(17), 3783–3792 (2004).
  • Ashley CE , CarnesEC, EplerKEet al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 6(3), 2174–2188 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.