110
Views
0
CrossRef citations to date
0
Altmetric
Review

Magnetoliposomes and Their Potential in the Intelligent drug-delivery Field

, &
Pages 1469-1482 | Published online: 04 Dec 2012

References

  • Blanco E , HsiaoA, Ruiz-EsparzaGU, LandryMG, Meric-BernstamF, FerrariM. Molecular targeted nanotherapies in cancer: enabling treatment specificity. Mol. Oncol.5(6), 492–503 (2011).
  • Whitehead KA , LangerR, AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8(2), 129–138 (2009).
  • Strebhardt K , UllrichA. Paul Elrich‘s magic bullet concept: 100 years of progress. Nat. Rev. Cancer8(6), 473–480 (2008).
  • Felsher D . Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer3(5), 375 (2003).
  • Hanahan D , WeinbergRA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Sumer B , GaoJ. Theranostic nanomedicine for cancer. J. Nanomed.3(2), 137–140 (2008).
  • Kaiser J . Looking for a target on every tumor. Science326(5950), 218–220 (2009).
  • Tsuruo T , NaitoM, TomidaAet al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 94(1), 15–21 (2003).
  • Gottesman MM , FojoT, BatesSE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer2(1), 48–58 (2002).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12), 751–760 (2007).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9), 688–701 (2006).
  • Stewart BW , KleihuesP. World Cancer Report. World Health Organization Press, Lyon, France (2012).
  • Siegel R , WardE, BrawleyO, JemalA. Cancer Statistics. CA. Cancer J. Clin.61, 212–236 (2009).
  • Janib SM , MosesAS, MacKayJA. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliver. Rev.62(11), 1052–1063 (2010).
  • Mout R , MoyanoDF, RanaS, RotelloVM. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev.41(7), 2539–2544 (2012).
  • Ashley CE . The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater.10(5), 389–397 (2011).
  • Safarik I , SafarikovaM. Scientific and Clinical Applications of Magnetic Carriers (1st Edition). Hafeli U, Schutt W, Teller J, Zborowski M (Eds). Plenum Press, NY, USA (1997).
  • Stone R , WilliT, RosenY, MeffordOT, AlexisF. Targeted magnetic hyperthermia. Therapeutic Delivery2(6), 815–838 (2011).
  • Hildebrandt B , WustP, AhlersOet al. The cellular and molecular basis of hyperthermia. CRC Cr. Rev. Oncol-Hem. 43(1), 33–56 (2002).
  • Sun C , LeeJSH, ZhangM. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev.60(11), 1252–1265 (2008).
  • Ho D , SunX, SunS. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res.44(10), 875–882 (2011).
  • Shubayev VI , PisanicII TR, Jin S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev.61(6), 467–477 (2009).
  • Mornet S , VasseurS, GrassetF, DuguetE. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem.14(14), 2161–2175 (2004).
  • Lin MM , KimDK, El Haj AJ, Dobson J. Development of superparamagnetic iron oxide nanoparticles, (SPIONS) for translation to clinical applications. IEEE Trans. Nanobiosci.7(4), 298–305 (2008).
  • Jun YW , LeeJH, CheonJ. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed.47(28), 5122–5135 (2008).
  • Dobson J . Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther.13(4), 283–287 (2006).
  • Jun Y , SeoJ, CheonJ. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. J. Acc. Chem. Res.41(2), 179–189 (2008).
  • Dames P , GleichB, FlemmerAet al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2(8), 495–499 (2007).
  • Dong F , GuoW, BaeJ, KimS, HaC. Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery. Chem. Eur. J.17(45), 12802–12808 (2011).
  • Lee JH , JangJ, ChoiJet al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol 6(7), 418–422 (2011).
  • Lübbe AS , AlexiouC, BergemannC. Clinical applications of magnetic drug targeting. J. Sur. Res.95(2), 200–206 (2001).
  • Lübbe AS , BergemannC, RiessHet al. Clinical experiences with magnetic drug targeting: a, Phase I, study with 4´-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56(20), 4686–4693 (1996).
  • Avilés MO , EbnerAD, RitterJA. Implant assisted-magnetic drug targeting: comparison of in vitro experiments with theory. J. Magn. Magn. Mater.320(21), 2704–2713 (2008).
  • Rotariu O , UdreaLE, StrachanNJC, BadescuV. Targeting magnetic carrier particles in tumour microvasculature: a numerical study. J. Optoelectron. Adv. M.7(6), 3209–3218 (2005).
  • Nasongkla N , BeyE, RenJet al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters 6(11), 2427–2430 (2006).
  • Park JH , von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed.47(38), 7284–7288 (2008).
  • Bakandritsos A , ZborilR, BouropoulosNet al. The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology. Nanotechnology 21(5), 055104, (2010).
  • Bakandritsos A , MattheolabakisG, ZborilRet al. Preparation stability and cytocompatibility of magnetic/PLA-PEG hybrids. Nanoscale 2(4), 564–572 (2010).
  • Yallapu MM , FoySP, JainTK, LabhasetwarV. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res.27(11), 2283–2295 (2010).
  • Martina MS , FortinJP, MénagerCet al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem. Soc. 127(30), 10676–10685 (2005).
  • Bakandritsos A , BouropoulosN, KoutoulogenisA, BoukosN, FatourosDG. Synthesis and characterization of iron oxide nanoparticles encapsulated in lipid membranes. J. Biomed. Nanotechnol.4(3), 313–318 (2008).
  • Skouras A , MourtasS, MarkoutsaEet al. Magnetoliposomes with high USPIO entrapping efficiency stability and magnetic properties. Nanomedicine 7(5), 572–579 (2011).
  • Sanson C , DiouO, ThevenotJet al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2), 1122–1140 (2011).
  • Hickey RJ , HaynesAS, KikkawaJM, ParkSJ. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J. Am. Chem. Soc.133(5), 1517–1525 (2011).
  • Liong M , LuJ, KovochichMet al. Multifunctional inorganic nanoparticles for imaging targeting and drug delivery. ACS Nano 2(5), 889–896 (2008).
  • Chen FH , ZhangLM, ChenQT, ZhangY, ZhangZJ. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem. Commun.46(45), 8633–8635 (2010).
  • Dilnawaz F , SinghA, MohantyC, SahooSK. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials31(13), 3694–3706 (2010).
  • Wei H , InsinN, LeeJet al. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett. 12(1), 22–25 (2011).
  • Chanana M , JahnS, GeorgievaR, Lutz J-F, Baumler H, Wang D. Fabrication of colloidal stable thermosensitive and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem. Mater.21(9), 1906–1914, (2009).
  • Yang X , HongH, GrailerJJet al. cRGD-functionalized DOX-conjugated and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17), 4151–4160 (2011).
  • Na HB , PaluiG, RosenbergJT, JiX, GrantSC, MattoussiH. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano6(1), 389–399 (2011).
  • Toomey R , TirrellM. Functional polymer brushes in aqueous media from self-assembled and surface-initiated polymers. Annu. Rev. Phys. Chem.59(1), 493–517 (2008).
  • Bakandritsos A , PapagiannopoulosA, AnagnostouENet al. Merging high doxorubicin loading with pronounced magnetic response and bio-repellent properties in hybrid drug nanocarriers. Small 8(15), 2381–2393 (2012).
  • Yu MK , JeongYY, ParkJet al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. 120(29), 5442–5445 (2008).
  • Lee H , YuM, ParkKet al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129(42), 12739–12745 (2007).
  • Guo M , YanY, ZhangHet al. Magnetic and pH-responsive nanocarriers with multilayer core–shell architecture for anticancer drug delivery. J. Mater. Chem. 18(42), 5104–5112 (2008).
  • Guo M , QueC, WangC, LiuX, YanH, LiuK. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials32(1), 185–194 (2011).
  • Kievit F , M Veiseh O, Bhattarai N et al. PEI-PEG-chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis complexation and transfection. Adv. Funct. Mater.19(14), 2244–2251 (2009).
  • Bakandritsos A , MattheolabakisG, ChatzikyriakosGet al. Doxorubicin nanocarriers based on magnetic colloids with a bio-polyelectrolyte corona and high non-linear optical response: synthesis, characterization, and properties. Adv. Funct. Mater. 21, 1465–1475 (2011).
  • Xing R , WangX, ZhangCet al. Superparamagnetic magnetite nanocrystal clusters as potential magnetic carriers for the delivery of platinum anticancer drugs. J. Mater. Chem. 21, 11142–11149 (2011).
  • Gautier J , MunnierE, PaillardAet al. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int. J. Pharm. 423, 616–625 (2012).
  • Roca AG , CostoR, RebolledoAFet al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42(22), 224002 (2009).
  • Laurent S , ForgeD, PortMet al. Magnetic iron oxide nanoparticles: synthesis stabilization vectorization physicochemical characterizations and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
  • Schladt TD , SchneiderK, SchildH, TremelW. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton. Trans.40(24), 6315–6343 (2011).
  • Deng H , LiX, PengQ, WangX, ChenJ, LiY. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed.44(18), 2782–2785 (2005).
  • Ge J , HuY, BiasiniM, BeyermannWP, YinY. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed.119(23), 4420–4423 (2007).
  • Luo B , XuS, LuoAet al. Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano. 5(2), 1428–1435 (2011).
  • Barick KC , AslamM, Lin Y-P, Bahadur D, Prasad PV, Dravid VP. Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. J. Mater. Chem.19(38), 7023–7029 (2009).
  • Sutton D , NasongklaN, BlancoE, GaoJ. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res.24, 1029–1046 (2007).
  • Lim EK , KimHO, JangEet al. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging. Biomaterials 32(31), 7941–7950 (2011).
  • Bangham AD , StandishMM, WatkinsJC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biology13, 238–252 (1965).
  • Papahadjopoulos D . Liposomes and their uses in biology and medicine. Ann. NY Acad. Sci.408, 1–10 (1978).
  • Gregoriadis G . Liposomes in therapeutic and preventive medicine: the development of the drug-carrier concept. Ann. NY Acad. Sci.308, 343–370 (1978).
  • Barenholz Y . Doxil® – the first FDA-approved nano-drug: lessons learned. J. Control. Release160(2), 117–134 (2012).
  • Mohammed AR , WestonN, CoombesAG, FitzgeraldM, PerrieY. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm.285(1–2), 23–34 (2004).
  • Sawant RR , TorchilinVP. Challenges in development of targeted liposomal therapeutics. AAPS J.14(2), 303–315 (2012).
  • Papahadjopoulos D , AllenTM, GabizonAet al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl Acad. Sci. USA 88, 11460–11464 (1991).
  • De Cuyper M , JoniauM. Magnetoliposomes. Formation and structural characterization. Eur. Biophys. J.15(5), 311–319 (1988).
  • De Cuyper M , JoniauM. Potentialities of magnetoliposomes in studying symmetric and asymmetric phospholipid transfer processes. Biochim. Biophys. Acta.1027(2), 172–178 (1990).
  • Wijaya A , Hamad-SchifferliK. High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir23, 9546–9550 (2007).
  • Cocquyt J , SoenenSJ, SaveynP, Van der Meeren P, De Cuyper M. Partitioning of propranolol in the phospholipid bilayer coat of anionic magnetoliposomes. J. Phys. Condens. Matter.20(20), 204102 (2008).
  • Sabaté R , Barnadas-RodríguezR, Callejas-FernándezJ, Hidalgo-AlvarezR, EstelrichJ. Preparation and characterization of extruded magnetoliposomes. Inter. J. Pharm.347, 156–162 (2008).
  • Cintra ER , FerreiraFS, Santos Junior JL et al. Nanoparticle agglomerates in magnetoliposomes. Nanotechnology20(4), 045103 (2009).
  • Pradhan P , GiriJ, RiekenFet al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 142, 108–121 (2010).
  • Kono K , TakagishiT, NejatD. Temperature-sensitive liposomes. Method Enzymol (Vol. 387), Academic Press, MA, USA (2004).
  • Garnier B , TanS, MirauxS, BledE, BrissonAR. Optimized synthesis of 100nm diameter magnetoliposomes with high content of maghemite particles and high MRI effect. Contr. Media Mol. Imag.7, 231–239 (2012).
  • Nuytten N , HakimhashemiM, YsenbaertTet al. PEGylated lipids impede the lateral diffusion of adsorbed proteins at the surface of (magneto)liposomes. Colloids Surf. B Bioint. 80(2), 227–231 (2010).
  • De Cuyper M , HodeniusM, LacavaZGet al. Attachment of water-soluble proteins to the surface of (magnetizable) phospholipid colloids via NeutrAvidin-derivatized phospholipids. J. Colloid. Inter. Sci. 245(2), 274–280 (2002).
  • Bothun GD , PreissMR. Bilayer heating in magnetite nanoparticle-liposome dispersions via fluorescence anisotropy. J. Colloid Interface Sci.2357(1), 70–74 (2011).
  • Qiu D , AnX, ChenZ, MaX. Microstructure study of liposomes decorated by hydrophobic magnetic nanoparticles. Chem. Phys. Lipids165(5), 563–570 (2012).
  • Mulder WJ , StrijkersGJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed.19(1), 142–164 (2006).
  • Margolis LB , NamiotVA, KljukinLM. Magnetoliposomes: another principle of cell sorting. Biochim. Biophys. Acta735(1), 193–195 (1983).
  • Bulte JW , de Cuyper M, Despres D, Frank JA. Short- vs long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. J. Magn. Reson. Imaging9(2), 329–335 (1999).
  • Fortin-Ripoche JP , MartinaMS, GazeauFet al. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239(2), 415–424 (2006).
  • De Cuyper M , SoenenSJ, CoenegrachtsK, BeekLT. Surface functionalization of magnetoliposomes in view of improving iron oxide-based magnetic resonance imaging contrast agents: anchoring of gadolinium ions to a lipophilic chelate. Anal. Biochem.367(2), 266–273 (2007).
  • Soenen SJ , VercauterenD, BraeckmansK, NoppeW, De Smedt S, De Cuyper M. Stable long-term intracellular labelling with fluorescently tagged cationic magnetoliposomes. Chembiochem.10, 257–267 (2009).
  • Vreys R , SoenenSJ, De Cuyper M, Van der Linden A. Background migration of USPIO/MLs is a major drawback for in situ labeling of endogenous neural progenitor cells. Contr. Media Mol. Imag.6(1), 1–6 (2011).
  • Bodempudi V , OhlfestJR, TeraiKet al. Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors. Canc. Gene Ther. 17, 855–863 (2010).
  • Dudek AZ . Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy. Transl. Res.156, 136–146 (2010).
  • De Meyer SF , VanhoorelbekeK, ChuahMKet al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 107, 4728–4736 (2006).
  • Soenen SJ , De Meyer SF, Dresselaers T et al. MRI assessment of blood outgrowth endothelial cell homing using cationic magnetoliposomes. Biomaterials32(17), 4140–4150 (2011).
  • Bertorelle F , WilhelmC, RogerJ, GazeauF, MénagerC, CabuilV. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir.22(12), 5385–5391 (2006).
  • Corr SA , RakovichYP, Gun‘koYK. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nano. Res. Lett.3, 87–104 (2008).
  • Zanczewski D , ZhangY, DasGKet al. Bimodal magnetic–fluorescent probes for bioimaging. Microsc. Res. Tech. 74, 563–576 (2011).
  • Hodenius M , WürthC, JayapaulJet al. Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging. Cont. Media Mol. Imag. 7(1), 59–67 (2012).
  • Viroonchatapan E , UenoM, SatoHet al. Preparation and characterization of dextran magnetite-incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness. Pharm. Res. 12(8), 1176–1183 (1995).
  • Viroonchatapan E , SatoH, UenoM, AdachiI, TazawaK, HorikoshiI. Magnetic targeting of thermosensitive magnetoliposomes to mouse livers in an in situ on-line perfusion system. Life Sci.58(24), 2251–2261 (1996).
  • Oussoren C , StormG. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev.50, 143–156 (2001).
  • Hamaguchi S , TohnaiI, ItoAet al. Selective hyperthermia using magnetoliposomes to target cervical lymph node metastasis in a rabbit tongue tumor model. Cancer Sci. 94(9), 834–839 (2003).
  • Wang L , ZhangJ, AnYet al. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo. Nanotechnology. 22(31), 315102 (2011).
  • Yoshida M , SatoM, YamamotoYet al. Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: interaction of chemotherapy and hyperthermia. J. Gastroenterol. Hepatol. 27(2), 406–411 (2012).
  • Kulshrestha P , GogoiM, BahadurD, BanerjeeR. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Coll. Surf. B Biointerfaces.96, 1–7 (2012).
  • Hodenius M , De Cuyper M, Desender L, Müller-Schulte D, Steigel A, Lueken H. Biotinylated stealth magnetoliposomes. Chem. Phys. Lipids120(1–2), 75–85 (2002).
  • Chen Y , BoseA, BothunGD. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano.4(6), 3215–3221 (2010).
  • Amstad E , KohlbrecherJ, MüllerE, SchweizerT, TextorM, ReimhultE. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett.11(4), 1664–1670 (2011).
  • Babincová M , LeszczynskaD, SourivongP, BabinecP, LeszczynskiJ. Principles of magnetodynamic chemotherapy. Med. Hypotheses.62(3), 375–377 (2004).
  • Viroonchatapan E , SatoH, UenoMet al. Microdialysis assessment of 5-fluorouracil release from thermosensitive magnetoliposomes induced by an electromagnetic field in tumor-bearing mice. J. Drug Target. 5(5), 379–390 (1998).
  • Shinkai M , LeB, HondaHet al. Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J. Cancer Res. 92(10), 1138–1145 (2001).
  • Babincová M , CicmanecP, AltanerováV, AltanerC, BabinecP. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry55(1–2), 17–19 (2002).
  • Kullberg M , MannK, OwensJL. Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med. Hypotheses64(3), 468–470 (2005).
  • Zhu L , HuoZ, WangL, TongX, XiaoY, NiK. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int. J. Pharm.370(1–2), 136–143 (2009).
  • Wang W , ZhaoX, HuHet al. Galactosylated solid lipid nanoparticles with cucurbaticin B improves the liver targetability. Drug Deliv. 17, 114–122 (2010).
  • Zaman NT , Yang Y-Y, Ying J-Y. Stimuli-responsive polymers for the targeted delivery of paclitaxel to hepatocytes. Nano Today5, 9–14 (2010).
  • Lee CM , JeongHJ, KimEMet al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn. Reson. Med. 62, 1440–1446 (2009).
  • Soenen SJ , BrissonAR, JonckheereEet al. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials 32(17), 4140–4150 (2011).
  • Soenen SJ , NuyttenN, De Meyer SF, De Smedt SC, De Cuyper M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small.6(7), 832–842 (2010).
  • Soenen SJ , BaertJ, De Cuyper M. Optimal conditions for labelling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability. Chembiochem8, 2067–2077 (2007).
  • Soenen SJ , BrissonAR, De Cuyper M. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials.30(22), 3691–3701 (2009).
  • Deans RJ , MoseleyAB. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol.28, 875–874 (2000).
  • Ito A , HibinoE, ShimizuKet al. Magnetic force-based mesenchymal stem cell expansion using antibody-conjugated magnetoliposomes. J. Biomed. Mater. Res. B Appl Biomater. 75(2), 320–327 (2005).
  • Domingo JC , MercadalM, PetrizJ, De Madariaga MA. Preparation of PEG-grafted immunomagnetoliposomes entrapping citrate stabilized magnetite particles and their application in CD34+ cell sorting. J. Microencaps.18(1), 41–54 (2001).
  • Dobrovolskaia MA , McNeilSE. Immunological properties of engineered nanomaterials. Nat. Nanotechnol.2(8), 469–478 (2007).
  • Wagner V , DullaartA, BockAK, ZweckA. The emerging nanomedicine landscape. Nat. Biotechnol.24(10), 1211–1217 (2006).
  • Grull H , LangereisH. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J. Control. Release161(2), 317–327 (2012).
  • Neuberger T , SchöpfB, HofmannH, HofmannM, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mat.293(1), 483–496 (2005).
  • Arruebo M , Fernandez-PachecoR, Riccardo-IbarraF, SantamariaJ. Magnetic nanoparticles for drug delivery. Nano Today2(3), 22–32 (2007).
  • Bawa R . Patents and nanomedicine. Nanomedicine2(3), 351–374 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.